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The study of networks has seen a tremendous breed of researches due to the explosive

spectrum of practical problems that involve networks as the access point. Those problems

widely range from detecting functionally correlated proteins in biology to finding people

to give discounts and gain maximum popularity of a product in economics. Thus, under-

standing and further being able to manipulate/control the development and evolution of

the networks become critical tasks for network scientists. Despite the vast research effort

putting towards these studies, the present state-of-the-arts largely either lack of high quality

solutions or require excessive amount of time in real-world ‘Big Data’ requirement.

This research aims at affirmatively boosting the modern algorithmic efficiency to ap-

proach practical requirements. That is developing a ground-breaking class of algorithms

that provide simultaneously both provably good solution qualities and low time and space

complexities. Specifically, I target the important yet challenging problems in the three main

areas:

• Information Diffusion: Analyzing and maximizing the influence in networks and
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extending results for different variations of the problems.

• Community Detection: Finding communities from multiple sources of information.

• Security and Privacy: Assessing organization vulnerability under targeted-cyber at-

tacks via social networks.
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CHAPTER 1

INTRODUCTION

The study of networks has seen an incredible surge in both depth and breadth dimensions

due to the ubiquitous role of network representation for real-world problems. As now

one of the fastest-growing platforms for marketing, political campaigns or even negative

propagandas, Online Social Networks (OSNs) with billion of users and connections have

disclosed an open-ended line of questions with broad applications, e.g., Information Dif-

fusion which focuses on propagations of influence, rumors or viruses over a probabilistic

network has found numerous practices in viral marketing, controlling/containing the epi-

demics/propaganda. Thus, understanding and further being able to control the dynamical

development or evolution of networks become vital tasks for network scientists. As a result,

such a rich body of research effort from various disciplines have been devoted to studying

the intrinsic properties of the networks and controlling the dynamic processes modeling the

diffusion of information or viruses. However, many of the fundamental questions on net-

works have not been answered satisfactorily due to their intractability nature plus with the

unprecedented sizes of their real-world instances, e.g. networks with millions or billions of

nodes and connections.

1.1 Research Scopes, Objectives, and Motivations of the Dissertation

This research aims towards affirmatively answering a wide variety of fundamental

problems that have not been solved rigorously. These tasks range from analyzing the net-

work structure, nodal properties to initiating, steering and stopping the dynamic processes

of information diffusion on networks. In particular, the problems of interest in this disser-
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tation fall into three important yet challenging areas: Information Diffusion, Community

Detection, Security and Privacy on Online Social Networks (OSNs).

1.1.1 Information Diffusion

Information diffusion studies the cascade or propagation of information, innovations,

rumors or viruses, which are generalized and termed Influence, over networks and have

found applications in viral marketing, outbreak detection and finding news leaders, trend-

setters, etc. We focus on three primary tasks:

• Influence Estimation (IE): Estimate the influence spread, i.e. cascade size, if the

propagation starts from a node.

• Influence Maximization (IM): Find a set of k nodes in the network to maximize the

influence spread.

• Tracing the Sources of Misinformation Cascades (TMC): Given an aftermath of a

propaganda, find a set of source nodes (unknown how many nodes) that best explains

the misinformation cascade.

Various empirical extensions of the IM, i.e., Cost-aware Targeted Viral Marketing (CTVM)

and Influence Spectrum (IS), are also investigated as described in the following.

1.1.1.1 Influence Estimation (IE)

A fundamental task in analyzing the cascades of influence is to estimate the cascade

size, also known as influence spread in social networks. This task is the foundation of the

solutions for many applications including viral marketing [55, 106, 105, 84], estimating

users’ influence [32, 77], optimal vaccine allocation [98], identifying critical nodes in the

network [29], and many others. Yet this task becomes computationally challenging in the

face of the nowadays social networks that may consist of billions of nodes and edges.

2
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Most of the existing work in network cascades uses stochastic diffusion models and

estimates the influence spread through sampling [55, 25, 29, 105, 77, 92]. The common

practice is to use a fixed number of samples, e.g. 10K or 20K [55, 105, 25, 92], to estimate

the expected size of the cascade, aka influence spread. Not only is there no single sample

size that works well for all networks of different sizes and topologies, but those approaches

also do not provide any accuracy guarantees. Recently, Lucier et al. [77] introduced IN-

FEST, the first estimation method that comes with accuracy guarantees. Unfortunately,

our experiments suggest that INFEST does not perform well in practice, taking hours on

networks with only few thousand nodes. Will there be a rigorous method to estimate the

cascade size in billion-scale networks?

1.1.1.2 Influence Maximization (IM)

Given a network and a budget k, Influence Maximization (IM) asks for k influential

users who can spread the influence widely into the network. Kempe et al. [55] were the first

to formulate IM as a combinatorial optimization problem on the two pioneering diffusion

models, namely, Independent Cascade (IC) and Linear Threshold (LT). They prove IM to

be NP-hard and provide a natural greedy algorithm that yields (1 − 1/e − ε)-approximate

solutions for any ε > 0. This celebrated work has motivated a vast amount of work on IM in

the past decade [70, 19, 47, 46, 25, 93, 106]. However, most of the existing methods either

too slow for billion-scale networks [55, 70, 47, 46, 25, 93] or ad-hoc heuristics without

performance guarantees [20, 19, 52, 111].

The most scalable methods with performance guarantee for IM are TIM/TIM+[106]

and latter IMM[105]. They utilize a novel RIS sampling technique introduced by Borgs et

al. in [11]. All these methods attempt to generate a (1 − 1/e − ε) approximate solution

with minimal numbers of RIS samples. They use highly sophisticated estimating methods

to make the number of RIS samples close to some theoretical thresholds θ [106, 105].
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However, they all share two shortcomings: 1) the number of generated samples can be

arbitrarily larger than θ, and 2) the thresholds θ are not shown to be the minimum among

their kinds.

Furthermore, the formulation of viral marketing as the IM problem encloses two im-

practical assumptions: 1) any seed user can be acquired with the same cost and 2) the same

benefit obtained when influencing one user. The first assumption implies that incentivizing

high-profile individuals costs the same as incentivizing common users. This often leads

to impractical solutions with unaffordable seed nodes, e.g., the solutions in Twitter often

include celebrities like Katy Perry or President Obama. The second assumption can mis-

lead the company to influence “wrong audience” who are neither interested nor potentially

profitable. In practice, companies often target not all users but specific sets of potential

customers, decided by the factors like age and gender. Moreover, the targeted users can

bring different amount of benefit to the company. Thus, simply counting the number of

influenced users, as in the case of IM, does not measure the true impact of the campaign

and lead to the choosing of wrong seed set. A few recent works attempt to address the

above two issues separately. In [90] the authors study the Budgeted Influence Maximiza-

tion (BIM) that considers an arbitrary cost for selecting a node and propose an (1−1/
√
e−ε)

approximation algorithm for the problem. However, their algorithm is not scalable enough

for billion-scale networks. Recently, there is a serial works in [9, 7, 18] investigating the

Targeted Viral Marketing (TVM) problem, in which they attempt to influence a subset of

users in the network. Unfortunately, all of these methods rely on heuristics strategy and

provide no performance guarantees.

On top of the challenges in solving the IM in huge networks, we often need to find seed

sets for multiple sizes k to make informed choices regarding budget and cost-effectiveness.

For example, a viral campaign marketing might go through multiple phases. The planning

of the expenses for each phase cannot be done properly without knowing the influence for
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multiple ranges of the number of seeds. Towards finding the optimal choices for multiple

budgets, the authors in [70] optimize the size-influence ratio (the expected number of in-

fluenced individuals per seed node) or finding the min-seed set that can influence a large

fraction of networks [76]. However, these approaches still give only one solution, that may

not suite the multi-objective nature of decision making processes.

1.1.1.3 Tracing the Sources of Misinformation Cascades

The explosion of online social networks with billion of users such as Facebook or

Twitter have fundamentally changed the landscapes of information sharing, nowadays. Un-

fortunately, the same channels can be exploited to spread rumors and misinformation that

cause devastating effects such as widespread panic in the general public [1], diplomatic

tensions [2], and witch hunts towards innocent people [3].

Given a snapshot of the network with a set VI of infected nodes who posted the rumors,

identifying the set of nodes who initially spread the rumors is a challenging, yet important

question, whether for forensic use or insights to prevent future epidemics. Other applica-

tions of infection source detection can be found in finding first computing devices that get

infected with a virus or source(s) of contamination in water networks.

Despite recent interest towards this problem, termed Infection Sources Identifications

(ISI), most of existing works either limit to single source detection [78, 75] or simple

network topologies, e.g. trees or grids, with ad hoc extensions to general graphs [67, 102,

101, 78]. A recent work in [97] provides an MDL-based method, called NETSLEUTH,

to detect both the number of infection sources and the sources themselves. However the

proposed heuristics seems to only work well for grid networks and cannot detect any true

infection source. Thus there is lack of a rigorous and accurate method to detect multiple

infection sources in general graphs.
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1.1.2 Community Detection

Online social networks (OSNs) have become ubiquitous in everyday settings for decades.

Many popular OSNs now have millions of users such as Twitter, Google+ or even billions of

users as in the case of Facebook [4]. Despite their distinct natures, social networks exhibit

several common topological properties, such as small-world [112], scale-free phenomenon

[95] and the crucial feature known as community structure (CS) [82].

Communities can be defined intuitively as groups of nodes that are more densely con-

nected to each other than to the rest of the network. For example, a community in Face-

book may correspond to a group of users who share a common interest, such as cooking,

fashion, music, etc. The goal of community detection, consequently, is to partition mean-

ingfully networks into groups of nodes. Thus, it lends itself into a wealth of applications,

such as forwarding and routing strategies in communication networks [30, 91]. Such struc-

tures give us insight into how the network function and topology affect each other. A large

number of methods has been proposed for community detection (see [66] and the reference

therein).

Despite the vast amount of work on the problem, even the state-of-the art methods per-

form poorly in recent benchmarks on real networks with known ground-truth communities

[50]. This dissertation focuses on two directions to improve the accuracy: finding commu-

nities across multiple networks and combining network topology with nodes’ attributes.

1.1.3 Security and Privacy: Targeted Cyber-attacks

As a double-edged sword, the massive explosion of Online Social Networks (OSNs)

all over the world has brought both opportunities and deadly dangers. On one side, OSNs

help increase social ties, e.g., bringing people closer no matter how distant they are, shar-

ing emotion/sympathy with others, or create business opportunities, e.g., cheap/targeted
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advertising. On the other side, they are irresistible places for the intelligent attackers

who have patience and skills to visit for target reconnaissance. That is because people

share/post on OSNs a wealth of valuable data including personal information, daily ac-

tivities or even work processes which are extremely useful for the attackers. The leak of

this information becomes severely devastating for companies/organizations when their em-

ployees’ data reach to the bad hands who use these to financially attack the organization.

Therefore, studying the attackers’ methods to find countermeasures is utterly important.

There have been a large number of studies on the methods and preventions/detections

of the attackers gathering target’s information with their own weaknesses. Web crawling

studied in [23, 15, 35, 16] is possibly the most traditional method with multiple variations,

e.g., focused crawling [16], crawling relevant websites [35]. This class of methods can

only collect public information on the organization’s web pages which are usually well-

inspected by the administrator and thus the crawled data are much less informative for

attackers. Another typical method is crawling online social networks (OSNs) in [17, 64]

which also admit the similar weakness as crawling websites. That is the attackers can only

retrieve the public profile of the users due to privacy setting feature. The privacy in OSNs

determines who can see your profile, e.g., only your mutual friends, everybody (public),

and is configured by the account owner. Only recently, a stream of work on socialbots [33,

38, 96, 94] is emerged and able to crawl private information by friending the targets in

OSNs. However, the bots exhibit abnormal behavior and easily get detected by network

monitoring. Moreover, there was very little understanding of how effective the method is

compared to the best possible one.

1.2 Contributions of the Dissertation

Under each category, we propose theoretically rigorous algorithms to find the solutions

and run in large-scale real-world networks.
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1.2.1 Information Diffusion

1.2.1.1 Influence Estimation (IE)

Outward Influence and High-confident Influence Estimation Algorithm:

We investigate efficient estimation methods for nodes’ influence under stochastic cas-

cade models [27, 55, 32]. First, we introduce a new influence measure, called outward

influence and defined as Iout(S) = I(S) − |S|, where I(S) denotes the influence spread.

The new measure excludes the self-influence artifact in influence spread, making it more

effective in comparing relative influence of nodes. As shown in Fig. 1, the influence spread

of the nodes are roughly the same, 1. In contrast, the outward influence of nodes u, v and

w are 0.12, 0.20, and 0.00, respectively. Those values correctly reflect the intuition that w

is the least influential nodes and v is nearly twice as influential as u.

S Influence I(S) Outward Influence Iout(S)

{u} 1 + p+ 2p2 = 1.12 p+ 2p2 = 0.12

{v} 1 + 2p = 1.20 2p = 0.20

{w} 1.00 0.00

Fig. 1.: Left: the influence of nodes under IC model. The influence of all nodes are roughly

the same, despite that w is much less influential than u and v. Right: Outward influence is

better at reflecting the relative influence of the nodes. w has the least outward influence, 0,

while v’s is nearly twice as that of u.

More importantly, the outward influence measure inspires novel methods, termed

SIEA/SOIEA, to estimate influence spread/outward influence at scale and with rigorous

theoretical guarantees. Both SOIEA and SIEA guarantee arbitrary small relative error

with high probability within an O(n) observed influence. The proposed methods are built

on two novel components 1) IICP an important sampling method for outward influence;
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and 2) RSA, a high-confident mean estimation method that minimize the number of sam-

ples through analyzing variance and range of random variables. IICP focuses only on non-

trivial cascades in which at least one node outside the seed set must be activated. As each

IICP generates cascades of size at least two and outward influence of at least one, it leads

to smaller variance and much faster convergence to the mean value. Under the well-known

independent cascade model [55], SOIEA is Ω(log4 n) times faster than the state-of-the-art

INFEST [77] in theory and is four to five orders of magnitude faster than both INFEST

and the naive Monte-Carlo sampling. For other stochastic models, such as continuous-time

diffusion model [32], LT model [55], SI, SIR, and variations [27], RSA can be applied di-

rectly to estimate the influence spread, given a Monte-Carlo sampling procedure, or, better,

with an extension of IICP to the model.

Importance Sampling for Accurate Influence Estimation at Scale: We propose a

new importance sketching technique, termed SKIS, that consists of non-singular reverse

influence cascades, or simply non-singular cascades. Each non-singular cascade simulates

the reverse diffusion process from a source node and must spread beyond the source to

one or more nodes. Thus, our sketch, specifically, suppresses singular cascades that die

prematurely at the source. Those singular cascades, consisting of 30%-80% portion in

the previous sketches [25, 11], not only waste the memory space and processing time but

also reduce estimation efficiency of the sketches. Consequently, SKIS contains samples

of smaller variances providing estimations of high concentration with less memory and

running time. Our new sketch also powers a new principle and scalable influence maxi-

mization class of methods, that inherits the algorithmic designs of existing algorithms on

top of SKIS sketch. Particularly, SKIS-based IM methods are the only provably good and

efficient enough that can scale to networks of billions of edges across different settings.

9
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1.2.1.2 Influence Maximization (IM)

Optimal Sampling Algorithms for IM: To address the weaknesses of previous stud-

ies, we 1) unify the approaches in [11, 106, 105] to characterize the necessary number

of RIS samples to achieve (1 − 1/e − ε)-approximation guarantee; 2) design two novel

sampling algorithms SSA and D-SSA aiming towards achieving minimum number of RIS

samples. In the first part, we begin with defining classes of RIS thresholds on the sufficient

numbers of RIS samples, generalizing θ thresholds in [106, 105]. The minimum threshold

in each class is then termed type-1 minimum threshold, and the minimum among all type-1

minimum thresholds is termed type-2 minimum threshold.

In the second part, we develop the Stop-and-Stare Algorithm (SSA) and its dynamic

version D-SSA that guarantee to achieve, within constant factors, the two minimum thresh-

olds, respectively. In short, the algorithms keep generating samples and stop at exponential

check points to verify (stare) if there is adequate statistical evidence on the solution quality

for termination. This strategy will be shown to address both of the shortcomings in [106,

105]: 1) guarantee to be close to the theoretical thresholds and 2) the thresholds are mini-

mal by definitions. The dynamic algorithm, D-SSA, improves over SSA by automatically

and dynamically selecting the best parameters for the RIS framework. We note that the

Stop-and-Stare strategy enables SSA and D-SSA to meet the minimum thresholds without

explicitly computing/looking for these thresholds.

Our experiments show that both SSA and D-SSA outperform the best existing meth-

ods up to several orders of magnitudes w.r.t running time while returning comparable seed

set quality. More specifically, on Friendster network with roughly 65.6 million nodes and

1.8 billion edges, SSA and D-SSA, taking 3.5 seconds when k = 500, are up to 1200

times faster than IMM. We also run CELF++ (the fastest greedy algorithm for IM with

guarantees) on Twitter network with k = 1000 and observe that D-SSA is 2 · 109 times

10
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faster.

Extension to Cost-aware Targeted Viral Marketing: We introduce the Cost-aware

Targeted Viral Marketing (CTVM) problem which takes into account both arbitrary cost

for selecting a node and arbitrary benefit for influencing a node. Given a social network

abstracted by a graph G = (V,E), each node u represents a user with a cost c(u) to select

into the seed set and a benefit b(u) obtained when u is influenced. Given a budget B, the

goal is to find a seed set S with total cost at mostB that maximizes the expected total benefit

over the influenced nodes. CTVM is more relevant in practice as it generalizes other viral

marketing problems including TVM, BIM and the fundamental IM. However, the problem

is much more challenging with heterogeneous costs and benefits. As we show in Section

3, extending the state-of-the-art method for IM in [106] may increase the running time by

a factor |V |, making the method unbearable for large networks.

We develop BCT, an efficient approximation algorithm for CTVM for billion-scale

networks. Given arbitrarily small ε > 0, our algorithm guarantees a (1 − 1/
√
e − ε)-

approximate solution in general case and a (1− 1/e− ε)-approximate solution when nodes

have uniform costs. BCT also dramatically outperforms the existing state-of-the-art meth-

ods for IM, e.i., IMM, TIM/TIM+, when nodes have uniform costs and benefits. In partic-

ular, BCT only takes several minutes to process a network with 41.7 million nodes and 1.5

billion edges.

Extension to Influence Spectrum: We propose the computation of Influence Spec-

trum (IS), the maximum influences (and the corresponding seed sets) for all possible seed

sizes from k = klower up to kupper. The influence spectrum gives better insights for decision

making and resource planning in viral marketing campaigns. Given the influence spectrum,

we can find the solutions for not only IM but also cost-effective seed set [70] and min-seed

set selection [76] problems (with the best approximation guarantees). As useful as it is, no

one has ever considered computing IS due to the perception that it seems extremely com-
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putationally expensive. The fact is computing IS implies solving of (kupper − klower + 1)

IM instances with seed size as large as n. Unfortunately, existing IM methods either do not

scale well with large seed sets [55, 70, 47, 46] or resort to heuristics [19], i.e., obtained

results that could be arbitrarily worse than the optimal ones.

One might look into adapting some greedy methods for IM for the task, e.g., solving IM

with k = kupper and output the solutions for all intermediate values of k = klower, . . . , kupper.

However, the original greedy approaches [55, 70] has a prohibitive cost and provide little

or no guarantees on each individual seed size. Direct usage of the state-of-the-art methods

for IM in [106, 105] for each seed size IS also results in an unbearable running time for

large ranges of klower ≤ k ≤ kupper. Not to mention that the extension only guarantees

approximation quality for each seed set individually in contrast to the whole range of seed

set sizes.

We introduce LISA, an efficient approximation algorithm to compute IS in billion-

size networks. Given arbitrarily small ε, δ > 0, our algorithm has an expected running time

O((m+ n)(k∗ log(n) + log(kupper − klower + 1))ε−2)1 and output (1− 1
e
− ε)-approximate

IS with probability of (1 − δ). Also, LISA requires only an additional O(n) space. The

proposed algorithm has the best theoretical guarantees and outperforms the state-of-the-art

methods for IM in practice. In particular, when ε = 0.1 and δ = 1/n, it takes about 15

minutes on a network with 41.7 million nodes and 1.5 billion edges under the LT model.

In comparison, it is up to 100 times faster than IMM [105], the fastest known method with

approximation guarantee for IM, when k = 1000 and is several magnitudes of order faster

than TIM and TIM+ for larger k while providing similar solution quality.

12
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Fig. 2.: Infection sources detection on a 60× 60 grid graph

1.2.1.3 Tracing the Sources of Misinformation Cascades

We present a new approach to identify multiple infection sources that looks into both

infected and uninfected nodes. This contradicts to existing methods [67, 97] which limit

the attention to the subgraph induced by the infected nodes. Given a snapshot of network

G = (V,E) and a set of infected nodes VI , we identify the sources by searching for a set

Ŝ that minimize the symmetric difference between the cascade from S and VI . While our

objective, the symmetric difference, is similar to the one used in k-effector [67], our novel

formulation does not require the knowledge of the number of infection sources k. In de-

riving optimization method for this new approach, we face strong challenges in developing

efficient solution:

• The exponential number, up to 2θ(n) for large VI , of possible solutions. This makes

the exhaustive search for the case of single source [78, 75, 36] intractable.

• The non-submodular objective. Thus, it is inefficient to solve the problem through

simple greedy methods.

1k∗ is the seed size that results in the longest running time among klower ≤ k ≤ kupper
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• The stochastic nature of the infection process requires considering exponentially

many possible cascades.

To tackle ISI, we propose SISI, an algorithm that can accurately detect infection

sources. We employ in SISI two novel techniques: a Truncated Reverse Infection Sam-

pling (TRIS) method to generate random reachability RR sets that encode the infection

landscape and a primal-dual algorithm for the Submodular-cost Covering [61]. SISI, to

our best knowledge, is the first algorithm with provable guarantee for multiple infection

sources detection in general graphs. It returns an 2
(1−ε)2 ∆-approximate solution with a high

probability, where ∆ denotes the maximum number of nodes in VI that may infect the same

node in the network. Experiments on real-world networks show the huge leap of SISI in

detecting true infection sources, boosting the true source discovery rates from merely few

percents, for the state-of-the-art NETSLEUTH, to more than 70%. Thus SISI has both

high empirical performance and theoretical guarantees.

The advantages of SISI over other methods are illustrated through a cascade on a

60× 60 grid in Fig. 2. SISI is the only one which can detect the true infection sources. To

avoid false negative, which is more serious than false positive, SISI often output slightly

more infection sources than other methods (SISI: 3, NETSLEUTH: 1, Greedy:1, Ground-

truth: 2). However, it maintains a reasonable F1-score of over 50%.

1.2.2 Community Detection

1.2.2.1 Community Detection in Multiplex Social Networks

In multiplex social networks, the participant of users across multiple networks re-

quires us to analyze all the networks (also referred to as the layers) simultaneously. The

connections in a layer may reveal latent relationship in other layers and, therefore, provide

additional information to unveil the underlying structure of those networks.
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Community detection in multiplex OSNs exposes several challenges. First, multiplex

OSNs are often heterogeneous, i.e., they can be directed vs. undirected, weighted vs. un-

weighted or have different degree densities. Moreover, the diverse topological wirings of

networks make the problem very complicated. Despite a large amount of research on CS

detection, CS in multiplex OSNs remains unaddressed at large. The closest works are the

ones on CS detection in multi-relational networks [73], however, these methods cannot be

applied directly for multiplex social networks. The reason for that lies in an unique feature

that multiplex OSNs has only one entity type, i.e., user, each entity is present in several

layers and existing approaches ignore this important phenomenon.

We proposed and compare two classes of approaches. The first class, named unifying

approach, finds a consistent CS in the networks by aggregating multiple accounts of the

same users. The second class finds mostly consistent CSs in the network using coupling

techniques. We also develop specialized NMF-based method for each class.

1.2.2.2 Community Detection in Multi-attributed Networks

In many cases, the formation of group connections is strongly influenced by users’

attributes/characters such as geographical location, occupations, gender, and so on. More-

over, there is a lack of efficient techniques to cope with overlapping communities, which

occur abundantly in real networks.

Thus, it is essential to design new methods that combine information from both net-

work topology and node attributes to uncover overlapping communities with higher order

of accuracy. Since topology and nodal attributes are two different aspects of data, they

can complement each other in finding more suitable community structure. For example,

attributes might tell us to which community a node with very few links belongs to. Con-

versely, two nodes having no common attributes but still belong to the same community

due to their strong topological similarity. The most direct work, in this direction, is from
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[114] where they obtain the best results over all previous methods. However, the proposed

method suffers heavily from an over-complex model, thus, scale poorly and has the poten-

tial of overfitting.

We propose a new generative model that describes the formation of topological edges

and attribute values in relation with CS. We, consequently, define finding overlapping com-

munities as an optimization problem using NMF framework and develop 3NCD algorithm.

We prove the convergence and provide efficient update procedure in order to speed up the

computational process by a factor of n compared to the straightforward implementation of

the update rules.

1.2.3 Security and Privacy: Targeted Cyber-attacks

We study the problem of adaptive targeted crawling in which an intelligent attacker

desires to gain benefit of users from a targeted organization. The attacker not only maxi-

mizes the crawling performance but also avoids being detected by mimicking the normal

behavior. That is, he approaches the target step by step: at each step, he sends a friend

request to one user and waits for the response. After receiving the response (accepted or

rejected indicated by no reply some period of time), he will select the next user to friend.

To maximize the crawled information, the attacker needs to specify which node to send re-

quest given the results of all the previous requests. The node specification strategy is called

a policy π.

We model the online social network, where there is a set of users from the targeted

organization, as a stochastic graph of nodes and weighted edges, i.e., nodes correspond to

users and edge weight reflects the probability of two users being connected. Here the edge

weights can be learned by link prediction [40, 39] from the public information. The attacker

is also a user in the network and has a probability of successfully friending each node in the

network. These probabilities can also be learned from the similarities between the attacker
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and public information of the users. Based on privacy setting, we quantitatively define

two types of benefit: 1) information benefit obtained from a user if that user is a friend of

attacker’s friends and 2) friending benefit obtained when a user accepts the attacker’s friend

request.

In our model, we define the crawling problem as an adaptive targeted maximization

problem that we later prove to be NP-hard. Thus, the problem is unsolvable in polynomial

time unless P=NP. Based on the recent advances in maximizing adaptive submodular func-

tions, we propose an approximation greedy policy π that is at least (1−1/e) as good as the

optimal policy π∗. The superiority of the proposed greedy policy is demonstrated in our

simulations compared with several naive node-ranking policy.

1.3 Organization of the Dissertation

In the following, each chapter will present in detail our proposed solutions for each of

the studied problems. Specifically, Chapter 2 introduces a high-confident influence estima-

tion and importance sketching technique that provide better accuracy and scalability than

existing algorithms. Chapter 3 presents our optimal sampling algorithms for IM and their

extensions to various real-world scenarios. We propose an approximation algorithm for

infection sources identification in Chapter 4. Chapters 5 gives details on our community

detections algorithms on multiplex and multi-attributed networks. Finally, our analysis of

targeted attack reconnaissance on social networks is demonstrated in Chapter 6.
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CHAPTER 2

INFLUENCE ESTIMATION

We propose high-confident, accurate and scalable algorithms for estimating the influences

of sets of nodes in a network. We investigate sampling algorithms that incorporate the

traditional Monte-Carlo estimation with our proposed state-of-the-art importance sampling

technique to maximize the utility of a sample intrinsically and algorithmically.

2.1 Basic Concepts and Definitions

2.1.1 Probabilistic Graph

We abstract a network using a probabilistic graph (weighted graph) G = (V,E,w)

with |V | = n nodes and |E| = m directed edges. For example, in a social network, V

and E correspond to the set of users and their social relationships, respectively. Each edge

(u, v) ∈ E is associated with a weight w(u, v) ∈ [0, 1] which indicates the probability that

u influences v.

2.1.2 Diffusion Models

Let’s consider a graph G = (V,E,w). Assume that there is a cascade starting from

a subset of nodes S ⊆ V , called seed set. How the cascade progress is described by a

diffusion model (aka cascade model)M that dictates how nodes gets activated/influenced.

In a stochastic diffusion model, the cascade is dictated by a random vector θ in a sample

space Ωθ. Describing the diffusion model is then equivalent to specifying the distribution

P of θ.

Let rS(θ) be the size of the cascade, the number of activated nodes in the end. The
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influence spread of S, denoted by I(S), under diffusion modelM is the expected size of

the cascade, i.e.,

I(S) =


∑

θ∈Ωθ
rθ(S) Pr[θ] for discrete Ωθ,∫

θ∈Ωθ
rθ(S)dP (θ) for continuous Ωθ

(2.1)

For example, we describe below the unknown vector θ and their distribution for the most

popular diffusion models.

• Information diffusion models, e.g. Independent Cascade (IC), Linear Threshold (LT),

the general triggering model [55]: θ ∈ {0, 1}|E|, and ∀(u, v) ∈ E, θ(u,v) is a Bernouli

random variable that indicates whether u activates/influences v. That is for given

w(u, v) ∈ (0, 1), θ(u, v) = 1 if u activates v with a probability w(u, v) and 0, other-

wise.

• Epidemic cascading models, e.g., Susceptible-Infected (SI) [27, 86] and its varia-

tions: θ ∈ N|E|, and ∀(u, v) ∈ E, θ(u,v) is a random variable following a geometric

distribution. θ(u,v) indicates how long it takes u to activates v after u is activated.

• Continuous-time models [32]: θ ∈ R|E|, and θ(u,v) is a continuous random variable

with density function πu,v(t). θ(u,v) also indicates the transmission times (time until

u activates v) like that in the SI model, however, the transmissions time on different

edges follow different distributions.

2.1.3 Monotone Submodular Functions

Given a finite set Ω, a submodular function is a set function f : 2Ω → R, where 2Ω

denotes the power set of Ω, which satisfies one of the following properties,
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• For every X, Y ⊆ Ω with X ⊆ Y and every x ∈ Ω\X , we have that,

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ) (2.2)

• For every X, Y ⊆ Ω, we have that,

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) (2.3)

The set function f : 2Ω → R is called monotone if for every X, Y ⊆ Ω and X ⊆ Y ,

we have that,

f(X) ≤ f(Y ) (2.4)

The set function f : 2Ω → R is monotone submodular if it is simultaneously monotone

and submodular.

2.2 High-confident Influence Estimation

Summary of contributions:

• We introduce a new influence measure, called Outward Influence which is more ef-

fective in differentiating nodes’ influence. We investigate the characteristics of this

new measure including non-monotonicity, submodularity, and #P-hardness of com-

putation.

• Two fully polynomial time randomized approximation schemes (FPRAS) SIEA and

SOIEA to provide (ε, δ)-approximate for influence spread and outward influence

with only an O(n) observed influence in total. Particularly, SOIEA, our algorithm to

estimate influence spread, is Ω(log4 n) times faster than the state-of-the-art INFEST

[77] in theory and is four to five orders of magnitude faster than both INFEST and

the naive Monte-Carlo sampling.
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• The high-confident mean estimation algorithm, termed RSA, a building block of

SIEA, can be used to estimate influence spread under other stochastic diffusion mod-

els, or, in general, mean of bounded random variables of unknown distribution. RSA

will be our favorite statistical algorithm moving forwards.

• We perform comprehensive experiments on both real-world and synthesis networks

with size up to 65 million nodes and 1.8 billion edges. Our experiments indicate the

superior of our algorithms in terms of both accuracy and running time in comparison

to the naive Monte-Carlo and the state-of-the-art methods. The results also give

evidence against the practice of using a fixed number of samples to estimate the

cascade size. For example, using 10000 samples to estimate the influence will deviate

up to 240% from the ground truth in a Twitter subnetwork. In contrast, our algorithm

can provide (pseudo) ground truth with guaranteed small (relative) error (e.g. 0.5%).

Thus it is a more concrete benchmark tool for research on network cascades.

2.2.1 Definitions and Properties

Outward Influence. We introduce the notion of Outward Influence which captures

the influence of a subset of nodes towards the rest of the network. Outward influence

excludes the self-influence of the seed nodes from the measure.

Definition 1 (Outward Influence). Given a graph G = (V,E), a set S ⊆ V and a diffusion

modelM, the Outward Influence of S, denoted by Iout(S), is

Iout(S) = I(S)− |S| (2.5)

Thus, influence and outward influence of a seed set S differ exactly by the number of

nodes in S.

Influence Spread/Outward Influence Estimations. A fundemental task in network
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science is to estimate the influence of a given seed set S. Since the exact computation is

#P-hard (Subsection 2.2), we aim for estimation with bounded error.

Definition 2 (Influence Spread Estimation). Given a graph G and a set S ⊆ V , the problem

asks for an (ε, δ)-estimate Î(S) of influence spread I(S), i.e.,

Pr[(1− ε)I(S) ≤ Î(S) ≤ (1 + ε)I(S)] ≥ 1− δ. (2.6)

The outward influence estimation problem is stated similarly:

Definition 3 (Outward Influence Estimation). Given a graph G and a set S ⊆ V , the

problem asks for an (ε, δ)-estimate Îout(S) of influence spread Iout(S), i.e.,

Pr[(1− ε)Iout(S) ≤ Îout(S) ≤ (1 + ε)Iout(S)] ≥ 1− δ. (2.7)

A common approach for estimation is through generating independent Monte-Carlo

samples and taking the average. However, one faces two major challenges:

• How to achieve a minimum number samples to get an (ε, δ)-approximate?

• How to effectively generate samples with small variance, and, thus, reduce the num-

ber of samples?

For simplicity, we focus on the well-known Independent Cascade (IC) model and

provide the extension of our approaches to other cascade models in Subsection 3.2.4.5.

2.2.1.1 Graph Samples and Probabilistic Space

Given a probabilistic graph G = (V,E) in which each edge (u, v) ∈ E is associated

with a number w(u, v) ∈ (0, 1). w(u, v) indicates the probability that node u will success-

fully activate v once u is activated. In practice, the probability w(u, v) can be mined from

interaction frequency [55, 106] or learned from action logs [43].
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Cascading Process. The cascade starts from a subset of nodes S ⊆ V , called seed

set. The cascade happens in discrete rounds t = 0, 1, ...|V |. At round 0, only nodes in

S are active and the others are inactive. When a node u becomes active, it has a single

chance to activate (aka influence) each neighbor v of u with probability w(u, v). An active

node remains active till the end of the cascade process. It stops when no more nodes get

activated.

Sample Graph. Associate with each edge (u, v) ∈ E a biased coin that lands heads

with probability w(u, v) and tails with probability 1−w(u, v). Deciding the outcome when

u attempts to activate v is then equivalent to the outcome of flipping the coin. If the coin

landed heads, the activation attemp succeeds and we call (u, v) a live-edge. Since all the

activation on the edges are independent in the IC model, it does not matter when we flip

the coin. That is we can flip all the coins associated with the edges (u, v) at the same time

instead of waiting until node u becomes active. We call the graph g that contains the nodes

V and all the live-edges a sample graph of G.

Note that the model parameter θ for the IC is a random vector indicating the states of

the edges, i.e. live-edge or not. In other words, Ωθ corresponds to the space of all possible

sample graphs of G, denoted by ΩG .

Probabilistic Space. The graph G can be seen as a generative model. The set of

all sample graphs generated from G together with their probabilities define a probabilistic

space ΩG . Recall that each sample graph g ∈ ΩG can be generated by flipping coins on all

the edges to determine whether or not the edge is live or appears in g. Each edge (u, v)

will be present in the a sample graph with probability w(u, v). Thus, the probability that a

sample graph g = (V,E ′ ⊆ E) is generated from G is

Pr[g ∼ G] =
∏

(u,v)∈E′
w(u, v)

∏
(u,v)∈E\E′

(1− w(u, v)). (2.8)
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Influence Spread and Outward Influence. In a sample graph g ∈ ΩG , let rg(S) be

the set of nodes reachable from S. The influence spread in Eq. 2.1 is rewritten,

I(S) =
∑
g∈ΩG

|rg(S)|Pr[g ∼ G], (2.9)

and the outward influence is defined accordingly to Eq. 2.5,

Iout(S) = I(S)− |S| (2.10)

2.2.1.2 Outward Influence under the IC model

We show the properties of outward influence under the IC model.

Better Influence Discrepancy. As illustrated through Fig. 1, the elimination of the

nominal constant |S| helps to differentiate the “actual influence” of the seed nodes to the

other nodes in the network. In the extreme case when p = o(1), the ratio between the

influence spread of u and v is 1+p+2p2

1+p+2p
≈ 1, suggesting u and v have the same influence.

However, outward influence can capture the fact that v can influence roughly twice the

number of nodes than u, since s Iout(u)
Iout(v)

= p+2p2

2p
≈ 1/2.

Non-monotonicity. Outward influence as a function of seed set S is non-monotone.

This is different from the influence spread. In Figure 1, Iout({u}) = 0.12 < Iout({u, v}) =

0.2, however, Iout({u}) = 0.12 > Iout({u,w}) = 0.11. That is adding nodes to the seed

set may increase or decrease the outward influence.

Submodularity. A submodular function expresses the diminishing returns behavior

of set functions and are suitable for many applications, including approximation algorithms

and machine learning. If Ω is a finite set, a submodular function is a set function f : 2Ω ←

R, where 2Ω denotes the power set of Ω, which satisfies that for every X, Y ⊆ Ω with
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X ⊆ Y and every x ∈ Ω \ Y , we have,

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ). (2.11)

Similar to influence spread, outward influence, as a function of the seed set S, is also

submodular.

Lemma 1. Given a network G = (V,E,w), the outward influence function Iout(S) for

S ∈ 2|V |, is a submodular function.

2.2.1.3 Hardness of Computation

If we can compute outward influence of S, the influence spread of S can be obtained

by adding |S| to it. Since computing influence spread is #P-hard [19], it is no surprise that

computing outward influence is also #P-hard.

Lemma 2. Given a probabilistic graph G = (V,E,w) and a seed set S ⊆ V , it is #P-hard

to compute Iout(S).

However, while influence spread is lower-bounded by one, the outward influence of

any set S can be arbitrarily small (or even zero). Take an example in Figure 1, node u has

influence of I({u}) = 1 + p+ 2p2 ≥ 1 for any value of p. However, u’s outward influence

Iout({u}) = p+ 2p2 can be exponentially small if p = 1
2n

. This makes estimating outward

influence challenging, as the number of samples needed to estimate the mean of random

variables is inversely proportional to the mean.

Monte-Carlo estimation. A typical approach to obtain an (ε, δ)-approximaion of a

random variable is through Monte-Carlo estimation: taking the average over many samples

of that random variable. Through the Bernstein’s inequality [26], we have the lemma:

Lemma 3. Given a set X1, X2, . . . of i.i.d. random variables having a common mean

µX , there exists a Monte-Carlo estimation which gives an (ε, δ)-approximate of the mean
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µX and uses T = O( 1
ε2

ln(2
δ
) b
µX

) random variables where b is an upper-bound of Xi, i.e.

Xi ≤ b.

To estimate the influence spread I(S), existing work often simulates the cascade pro-

cess using a BFS-like procedure and takes the average of the cascades’ sizes as the influence

spread. The number of samples needed to obtain an (ε, δ)-approximation isO( 1
ε2

log
(

1
δ

)
n

I(S)
)

samples. Since I(S) ≥ 1, in the worst-case, we need only a polynomial number of samples,

O( 1
ε2

log
(

1
δ

)
n).

Unfortunately, the same argument does not apply for the case of Iout(S), since Iout(S)

can be arbitrarily close to zero. For the same reason, the recent advances in influence esti-

mation in [11, 77] cannot be adapted to obtain a polynomial-time algorithm to compute an

(ε, δ)-approximation (aka FPRAS) for outward influence. We shall address this challeng-

ing task in the next section.

We summarize the frequently used notations in Table 24.

Table 1.: Table of notations

Notations Descriptions

n,m #nodes, #edges of graph G = (V,E,w).
I(S) Influence Spread of seed set S ⊆ V .
Iout(S) Outward Influence of seed set S ⊆ V .

Nout(u)
The set of out-neighbors of u: Nout(u) = {v ∈ V |(u, v) ∈
E}.

Nout
S Nout

S =
⋃
u∈S N

out(u)\S.

Ai
The event that vi is active and v1, . . . , vi−1 are not active
after round 1.

β0 β0 =
∑l

i=1 Pr[Ai] = 1− Pr[Al+1].
c(ε, δ) c(ε, δ) = (2 + 2

3ε) ln(2
δ ) 1
ε2
.

ε′ ε′ = ε
(

1− εb
(2+ 2

3
ε) ln( 2

δ
)(b−a)

)
≈ ε(1−O( 1

lnn)) for δ = 1
n .

Υ Υ = (1 + ε)c(ε′, δ)(b− a).
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2.2.2 Outward Influence Estimation via Importance Sampling

We propose a Fully Polynomial Randomized Approximation Scheme (FPRAS) to es-

timate the outward influence of a given set S. Given two precision parameters ε, δ ∈ (0, 1),

our FPRAS algorithm guarantees to return an (ε, δ)-approximate Îout(S) of the outward

influence Iout(S),

Pr[(1− ε)Iout(S) ≤ Îout(S) ≤ (1 + ε)Iout(S)] ≥ 1− δ. (2.12)

General idea. Our starting point is an observation that the cascade triggered by the seed set

with small influence spread often stops right at round 0. The probability of such cascades,

termed trivial cascades, can be computed exactly. Thus if we can sample only the non-

trivial cascades, we will obtain a better sampling method to estimate the outward influence.

The reason is that the “outward influence” associated with non-trivial cascade is also lower-

bounded by one. Thus, we again can apply the argument in the previous section on the

polynomial number of samples.

Given a graph G and a seed set S, we introduce our importance sampling strategy to

generate such non-trivial cascades. It consists of two stages:

1. Guarantee that at least one neighbor of S will be activated through a biased selection

towards the cascades with at least one node outside of S and,

2. Continue to simulate the cascade using the standard procedure following the diffu-

sion model.

This importance sampling strategy is general for different diffusion models. In the follow-

ing, we illustrate our importance sampling under the focused IC model.
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2.2.2.1 Importance IC Polling

We propose Importance IC Polling (IICP) to sample non-trivial cascades in Algo-

rithm 1.

Fig. 3.: Neighbors of nodes in S

First, we “merge” all the nodes in S and define a “unified neighborhood” of S. Specif-

ically, let N out(u) = {v|(u, v) ∈ E} the set of out-neighbors of u and N out
S =

⋃
u∈S

N out
u \S

the set of out-neighbors of S excluding S. For each v ∈ N out
S ,

PS,v = 1−
∏
u∈S

(1− w(u, v)), (2.13)

the probability that v is activated directly by one (or more) node(s) in S. Without loss of

generality, assume that PS,v < 1 (otherwise, we simply add v into S).

Assume an order on the neighborhood of S, that is

N out
S = {v1, v2, . . . , vl},

where l = |N out
S |. For each i = 1..l, let Ai be the event that vi be the “first” node that gets

activated directly by S:

Ai = {v1, . . . , vi−1 are not active and vi is active after round 1}.

The probability of Ai is

Pr[Ai] = PS,vi

i−1∏
j=1

(1− PS,vj). (2.14)
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For consistency, we also denoteAl+1 the event that none of the neighbors are activated, i.e.,

Pr[Al+1] = 1−
l∑

i=1

Pr[Ai]. (2.15)

Note that Al+1 is also the event that the cascade stops right at round 0. Such a cascade is

termed a trivial cascade. As we can compute exactly the probability of trivial cascades, we

do not need to sample those cascades but focus only on the non-trivial ones.

Denote by β0 the probability of having at least one nodes among v1, . . . , vl activated

by S, i.e.,

β0 =
l∑

i=1

Pr[Ai] = 1− Pr[Al+1]. (2.16)

We now explain the details in the Importance IC Polling Algorithm (IICP), summa-

rized in Alg. 1. The algorithm outputs the size of the cascade minus the seed set size. We

term the output of IICP the outer size of the cascade. The algorithm consists of two stages.

Stage 1. By definition, the events Ai, A2, ..., Al, Al+1 are disjoint and form a partition

of the sample space. To generate a non-trivial cascade, we first select in the first round

vi, i = 1, . . . , l with a probability Pr[Ai]
β0

, i = 1, . . . , l (excluding Al+1). This will guarantee

that at least one of the neighbors of S will be activated. Let vi be the selected node, after

the first round vi becomes active and v1, . . . , vi−1 remains inactive. The nodes vj among

vi+1, . . . , vl are then activated independently with probability PS,vj (Eq. 2.13).

Stage 2. After the first stage of sampling neighbors of S, we get a non-trivial set of

nodes directly influenced from S. For each of those nodes and later influenced nodes, we

will sample a set of its neighbors by the naive BFS-like IC polling scheme [55]. Assume

sampling neighbors of a newly influenced node u, each neighbor vj ∈ N out(u) is influenced

by u with probability w(u, vj). The neighbors of those influenced nodes are next to be

sampled in the same fashion.

29



www.manaraa.com

Algorithm 1: IICP - Importance IC Polling
Input: A graph G = (V,E,w) and a seed set S

Output: Y (S) - size of a random outward cascade from S

Stage 1 // Sample non-trivial neighbors of set S

Precompute Pr[Ai], i = 1, . . . , l + 1 using Eq. 2.14 and Eq. 2.15

Select one neighbor vi among v1, . . . , vl with probability of selecting vi being Pr[Ai]
β0

Queue R← {vi};Y (S) = 1; Mark vi and all nodes in S visited

for j = i+ 1 : l do
With a probability PS,vj do

Add vj into R; Y (S) ← Y (S) + 1; Mark vj visited.

end

Stage 2 // Sample from newly influenced nodes

while R is non-empty do
u← R.pop()

foreach unvisited neighbor v of u do
With a probability w(u, v)

Add v to R; Y (S) ← Y (S) + 1; Mark v visited.

end

end

return Y (S);

In addition, we keep track of the newly influenced nodes using a queue R and the

number of active nodes outside S using Y (S).

The following lemma shows how to estimate the (expected) cascade size through the

(expected) outer size of non-trivial cascades.

Lemma 4. Given a seed set S ⊆ V , let Y (S) be the random variable associated with the

output of the IICP algorithm. The following properties hold,
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• 1 ≤ Y (S) ≤ n− |S|,

• Iout(S) = E [Y (S)] · β0.

Further, let ΩW be the probability space of non-trivial cascades and ΩY the probability

space for the outer size of non-trivial cascades, i.e, Y (S). The probability of Y (S) ∈ [1, n−

|S|] is given by,

Pr[Y (S) ∈ ΩY ] =
∑

W (S)∈ΩW ,|W (S)|=Y (S)

Pr[W (S) ∈ ΩW ].

2.2.2.2 FPRAS for Outward Influence Estimation

From Lemma 4, we can obtain an estimate Îout(S) of Iout(S) through getting an esti-

mate Ê [Y (S)] of E [Y (S)] by,

Pr
[
(1− ε)E [Y (S)] ≤ Ê [Y (S)] ≤ (1 + ε)E [Y (S)]

]
= Pr

[
(1− ε)E [Y (S)]β0 ≤ Ê [Y (S)]β0 ≤ (1 + ε)E [Y (S)]β0

]
= Pr

[
(1− ε)Iout(S) ≤ Îout(S) ≤ (1 + ε)Iout(S)

]
, (2.17)

where the estimate Îout(S) = Ê [Y (S)] · β0. Thus, finding an (ε, δ)-approximation of Iout(S)

is then equivalent to finding an (ε, δ)-approximate Ê [Y (S)] of E [Y (S)].

The advantage of this approach is that estimating E [Y (S)], in which the random vari-

able Y (S) has value of at least 1, requires only a polynomial number of samples. Here

the same argument on the number of samples to estimate influence spread in subsec-

tion 2.2.1.3 can be applied. Let Y (S)
1 , Y

(S)
2 , . . . be the random variables denoting the output

of IICP. We can apply Lemma 3 on the set of random variables Y (S)
1 , Y

(S)
2 , . . . satisfy-

ing 1 ≤ Y
(S)
i ≤ |V | − |S|. Since each random variable Y (S)

i is at least 1 and hence,

µY = E [Y (S)] ≥ 1, we need at most a polynomial T = O(ln(2
δ
) 1
ε2

(n − |S|)) random

variables for the Monte-Carlo estimation. Since, IICP has a worst-case time complexity
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O(m+ n), the Monte-Carlo using IICP is an FPRAS for estimating outward influence.

Theorem 1. Given arbitrary 0 ≤ ε, δ ≤ 1 and a set S, the Monte-Carlo estimation using

IICP returns an (ε, δ)-approximation of Iout(S) using O(ln(2
δ
) 1
ε2

(n− |S|)) samples.

In Section 2.2.4, we will show that both outward influence and influence spread can

be estimated by a powerful algorithm saving a factor of more than 1
ε

random variables

compared to this FPRAS estimation. The algorithm is built upon our mean estimation

algorithms for bounded random variables proposed in the following.

2.2.3 Efficient Mean Estimation for Bounded Random Variables

In this section, we propose an efficient mean estimation algorithm for bounded random

variables. This is the core of our algorithms for accurately and efficiently estimating the

outward influence and influence spread in Section 2.2.4.

We first propose an ‘intermediate’ algorithm: Generalized Stopping Rule Estimation

(GSRA) which relies on a simple stopping rule and returns an (ε, δ)-approximate of the

mean of lower-bounded random variables. The GSRA simultaneously generalizes and

fixes the error of the Stopping Rule Algorithm [26] which only aims to estimate the mean

of [0, 1] random variables and has a technical error in its proof.

The main mean estimation algorithm, namely Robust Sampling Algorithm (RSA) pre-

sented in Alg. 3, effectively takes into account both mean and variance of the random vari-

ables. It uses GSRA as a subroutine to estimate the mean value and variance at different

granularity levels.

2.2.3.1 Generalized Stopping Rule Algorithm

We aim at obtaining an (ε, δ)-approximate of the mean of random variablesX1, X2, . . . .

Specifically, the random variables are required to satisfy the following conditions:
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• a ≤ Xi ≤ b, ∀i = 1, 2, . . .

• E [Xi+1|X1, X2, ..., Xi] = µX , ∀i = 1, 2, . . .

where 0 ≤ a < b are fixed constants and (unknown) µX .

Our algorithm generalizes the stopping rule estimation in [26] that provides (ε, δ) es-

timation of the mean of i.i.d. random variables X1, X2, ... ∈ [0, 1]. The notable differences

are the following:

• We discover and amend an error in the stopping algorithm in [26]: the number

of samples drawn by that algorithm may not be sufficient to guarantee the (ε, δ)-

approximation.

• We allow estimating the mean of random variables that are possibly dependent and/or

with different distributions. Our algorithm works as long as the random variables

have the same means. In contrast, the algorithm in [26] can only be applied for i.i.d

random variables.

• Our proposed algorithm obtains an unbiased estimator of the mean, i.e. E [µ̂X ] = µX

while [26] returns a biased one.

• Our algorithm is faster than the one in [26] whenever the lower-bound for random

variables a > 0.

Our Generalized Stopping Rule Algorithm (GSRA) is described in details in Alg. 2.

Denote c(ε, δ) = (2 + 2
3
ε) ln(2

δ
) 1
ε2

.

The algorithm contains two main steps: 1) Compute the stopping threshold Υ (Line 2)

which relies on the value of ε′ computed from the given precision parameters ε, δ and the

range [a, b] of the random variables; 2) Consecutively acquire the random variables until the

sum of their outcomes exceeds Υ (Line 4-5). Finally, it returns the average of the outcomes,
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Algorithm 2: Generalized Stopping Rule Alg. (GSRA)
Input: Random variables X1, X2, . . . and 0 < ε, δ < 1

Output: An (ε, δ)-approximate of µX = E[Xi]

If b− a < εb, return µX = a.

Compute: ε′ = ε
(

1− εb
(2+ 2

3
ε) ln( 2

δ
)(b−a)

)
; Υ = (1 + ε)c(ε′, δ)(b− a);

Initialize h = 0, T = 0;

while h < Υ do
h← h+XT , T ← T + 1;

end

return µ̂X = h/T ;

µ̂X = h/T (Line 6), as an estimate for the mean, µX . Notice that Υ in GSRA depends on

(b − a) and thus, getting tighter bounds on the range of random variables holds a key for

the efficiency of GSRA in application perspectives.

The approximation guarantee and number of necessary samples are stated in the fol-

lowing theorem.

Theorem 2. The Generalized Stopping Rule Algorithm (GSRA) returns an (ε, δ)-approximate

µ̂X of µX , i.e.,

Pr[(1− ε)µX ≤ µ̂X ≤ (1 + ε)µX ] > 1− δ, (2.18)

and, the number of samples T satisfies,

Pr[T ≤ (1 + ε)Υ/µX ] > 1− δ/2. (2.19)

The hole in the Stopping Rule Algorithm in [26]. The estimation algorithm in [26]

for estimating the mean of random variables in range [0, 1] also bases on a main stopping
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rule condition as our GSRA. It computes a threshold

Υ1 = 1 + (1 + ε)4(e− 2) ln(
2

δ
)

1

ε2
, (2.20)

where e is the base of natural logarithm, and generates samples Xj until
∑T

j=1 Xj ≥ Υ1.

The algorithm returns µ̂X = Υ1

T
as a biased estimate of µX .

Unfortunately, the threshold Υ1 to determine the stopping time does not completely

account for the fact that the necessary number of samples should go over the expected one

in order to provide high solution guarantees. This actually causes a flaw in their later proof

of the correctness.

To amend the algorithm, we slightly strengthen the stopping condition by replacing

the ε in the formula of Υ with an ε′ = ε
(

1 − εb
(2+ 2

3
ε) ln( 2

δ
)(b−a)

)
(Line 2, Alg. 2). Since

εb < b− a (else the algorithm returns µX = a) and assume w.l.o.g. that δ < 1/2, it follows

that ε′ ≥ 0.729ε. Thus the number of samples, in comparison to those in the stopping rule

algorithm in [26] increases by at most a constant factor.

Benefit of considering the lower-bound a. By dividing the random variables by b,

one can apply the stopping rule algorithm in [26] on the normalized random variables. The

corresponding value of Υ is then

Υ = 1 + (1 + ε)(2 +
2

3
ε) ln(

2

δ
)

1

ε′2
b (2.21)

Υ in our proposed algorithm is however smaller by a multiplicative factor of b−a
b

. Thus

it is faster than the algorithm in [26] by a factor of b−a
b

on average. Note that in case of

estimating the influence, we have a = 1, b = n− |S|. Compared to algorithm applied [26]

directly, our GSRA algorithm saves the generated samples by a factor of b−a
b

= n−|S|−1
n

=

1− |S|+1
n

< 1.

Martingale theory to cope with weakly-dependent random variables. To prove

Theorem 2, we need a stronger Chernoff-like bound to deal with the general random vari-
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ables X1, X2, . . . in range [a, b] presented in the following.

Let define random variables Yi =
∑i

j=1(Xj − µX),∀i ≥ 1. Hence, the random

variables Y1, Y2, . . . form a Martingale [79] due to the following,

E [Yi|Y1, . . . , Yi−1] = E [Yi−1] + E [Xi − µX ] = E [Yi−1].

Then, we can apply the following lemma from [24] stating,

Lemma 5. Let Y1, . . . , Yi, ... be a martingale, such that |Y1| ≤ α, |Yj − Yj−1| ≤ α for all

j = [2, i], and

Var[Y1] +
i∑

j=2

Var[Yj|Y1, . . . , Yj−1] ≤ β. (2.22)

Then, for any λ ≥ 0,

Pr[Yi − E [Yi] ≥ λ] ≤ exp(− λ2

2/3 · α · λ+ 2 · β
) (2.23)

In our case, we have |Y1| = |X1 − µX | ≤ b − a, |Yj − Yj−1| = |Xi − µX | ≤ b − a,

Var[Y1] = Var[X1 − µX ] = Var[X] and Var[Yj|Y1, . . . , Yj] = Var[Xj − µX ] = Var[X].

Apply Lemma 2 with i = T and λ = εTµX , we have,

Pr
[ T∑
j=1

Xj ≥ (1 + ε)µXT
]
≤ exp

( −ε2T 2µ2
X

2
3
(b− a)εµXT + 2Var[X]T

)
(2.24)

Then, since Var[X] ≤ µX(b − µX) ≤ µX(b − a) ( since Bernoulli random variables

with the same mean µX have the maximum variance), we also obtain,

Pr
[ T∑
j=1

Xj ≥ (1 + ε)µXT
]
≤ exp

( −ε2TµX
(2 + 2

3
ε)(b− a)

)
. (2.25)

Similarly, −Y1, . . . ,−Yi, . . . also form a Martingale and applying Lemma 5 gives the
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following probabilistic inequality,

Pr
[ T∑
j=1

Xj ≤ (1− ε)µXT
]
≤ exp

(
− ε2TµX

2(b− a)

)
. (2.26)

Algorithm 3: Robust Sampling Algorithm (RSA)
Input: Two streams of i.i.d. random variables, X1, X2, . . . and X ′1, X

′
2, . . . and

0 < ε, δ < 1
Output: An (ε, δ)-approximate µ̂X of µX
Step 1 // Obtain a rough estimate µ̂′X of µX

if ε ≥ 1/4 then
return µ̂X ← GSRA(< X1, X2, . . . >, ε, δ)

end
µ̂′X ← GSRA(< X1, X2, . . . >,

√
ε, δ/3)

Step 2 // Estimate the variance σ̂2
X

Υ2 = 21+
√
ε

1−
√
ε
(1 + ln(3

2)/ ln(2
δ )) ·Υ;Nσ = Υ2 · ε/µ̂′X ; ∆ = 0; // Υ is defined

the same as in Alg. 2
for i = 1 : Nσ do

∆← ∆ + (X ′2i −X ′2i+1)2/2;
end
ρ̂X = max{σ̂2

X = ∆/Nσ, εµ̂
′
X(b− a)};

Step 3 // Estimate µX

Set T = Υ2 · ρ̂X/(µ̂′2X(b− a)), S ← 0;
for i = 1 : T do

S ← S +Xi;
end
return µ̂X = S/T ;

2.2.3.2 High-confident Sampling Algorithm

Our previously proposed GSRA algorithm may have problem in estimating means

of random variables with small variances. An important tool that we rely on to prove the

approximation guarantee in GSRA is the Chernoff-like bound in Eq. 2.25 and Eq. 2.26.

However, from the inequality in Eq. 2.24, we can also derive the following stronger in-
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equality,

Pr
[ T∑
j=1

Xj ≥ (1 + ε)µXT
]
≤ exp

( −ε2T 2µ2
X

2
3
(b− a)εµXT + 2Var[X]T

)
≤ exp

( −ε2Tµ2
X

(2 + 2
3
) max{εµX(b− a),Var[X]}

)
. (2.27)

In many cases, random variables have small variances and hence max{εµX(b−a),Var[X]} =

εµX(b − a). Thus, Eq. 2.27 is much stronger than Eq. 2.25 and can save a factor of 1
ε

in

terms of required observed influences translating into the sample requirement. However,

both the mean and variance are not available.

To achieve a robust sampling algorithm in terms of sample complexity, we adopt and

improve the AA algorithm in [26] for general cases of [a, b] random variables. The robust

sampling algorithms (RSA) subsequently will estimate both the mean and variance in three

steps: 1) roughly estimate the mean value with larger error (
√
ε or a constant); 2) use

the estimated mean value to compute the number of samples necessary for estimating the

variance; 3) use both the estimated mean and variance to refine the required samples to

estimate mean value with desired error (ε, δ).

Let X1, X2, . . . and X ′1, X
′
2, . . . are two streams of i.i.d random variables. Our robust

sampling algorithm (RSA) is described in Alg. 3. It consists of three main steps:

1) If ε ≥ 1/4, run GSRA with parameter ε, δ and return the result (Line 1-2). Otherwise,

assume ε < 1/4 and use the Generalized Stopping Rule Algorithm (Alg. 2) to obtain

an rough estimate µ̂′X using parameters of ε′ =
√
ε < 1/2, δ′ = δ/3 (Line 3).

2) Use the estimated µ̂′X in step 1 to compute the necessary number of samples, Nσ,

to estimate the variance of Xi, σ̂2
X . Note that this estimation uses the second set of

samples, X ′1, X
′
2, . . .

3) Use both µ̂′X in step 1 and σ̂2
X in step 2 to compute the actual necessary number of
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samples, T , to approximate the mean µX . Note that this uses the same set of samples

X1, X2, . . . as in the first step.

The numbers of samples used in the first two steps are always less than a constant times

Υ · ε/µX which is the minimum samples that we can achieve using the variance. This is

because the first takes the error parameter
√
ε which is higher than ε and the second step

uses Nσ = Υ2 · ε/µ̂′X samples.

At the end, the algorithm returns the influence estimate µ̂X which is the average over

T samples, µ̂X = S/T . The estimation guarantees are stated in the following theorem.

Theorem 3. Let X be the probability distribution that X1, X2, . . . and X ′1, X
′
2, . . . are

drawn from. Let µ̂X be the estimate of E [X] returned by Alg. 3 and T be the number of

drawn samples in Alg. 3 w.r.t. ε, δ. We have,

(1) Pr[µX(1− ε) ≤ µ̂X ≤ (1 + ε)µX ] ≥ 1− δ,

(2) There is a universal constant c′ such that

Pr[T > c′ΥρX/(µ
2
X(b− a))] ≤ δ (2.28)

where ρZ = max{εµX(b− a),Var[X]}.

Compared to the AA algorithm in [26], first of all, we replace their stopping rule

algorithm with GSRA and also, we change the computation of Υ2 which is always smaller

than that of [26] by a factor of 1 +
√
ε− 2ε ≥ 1 when ε ≤ 1/4.

2.2.4 Influence Estimation at Scale

This section applies our RSA algorithm to estimate both the outward influence and

the traditional influence spread.
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2.2.4.1 Outward Influence Estimation

We directly apply RSA algorithm on two streams of i.i.d. random variables Y (S)
1 , Y

(S)
2 , . . .

and Y ′(S)
1 , Y

′(S)
2 , . . . , which are generated by IICP sampling algorithm, with the precision

parameters ε, δ.

The algorithm is called Scalable Outward Influence Estimation Algorithm (SOIEA)

and presented in Alg. 4 which generates two streams of random variables Y (S)
1 , Y

(S)
2 , . . .

and Y ′(S)
1 , Y

′(S)
2 , . . . (Line 1) and applies RSA algorithm on these two streams (Line 2).

Note that outward influence estimate is achieved by scaling down µY by β0 (Lemma 4).

Algorithm 4: SOIEA Alg. to estimate outward influence
Input: A probabilistic graph G, a set S and ε, δ

Output: Î(S) - an (ε, δ)-estimate of I(S)

Generate two streams of i.i.d. random variables Y (S)
1 , Y

(S)
2 , . . . and

Y
′(S)

1 , Y
′(S)

2 , . . . by IICP algorithm.

return Îout(S)← β0 · RSA(< Y
(S)

1 , · · · >,< Y
′(S)

1 , · · · >, ε, δ)

We obtain the following theoretical results incorporated from Theorem 3 of RSA and

IICP samples.

Theorem 4. The SOIEA algorithm gives an (ε, δ) outward influence estimation. The ob-

served outward influences (sum of Y (S)) and the number of generated random variables are

inO(ln(2
δ
) 1
ε2

ρY
Iout(S)/β0

) andO(ln(2
δ
) 1
ε2

ρY
I2out(S)/β2

0
) respectively, where ρY = max{εIout(S)(n−

|S| − 1)/β0,Var[Y
(S)
i ]}.

Note that E [Y (S)] = Iout(S)/β0 ≥ 1.
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2.2.4.2 Influence Spread Estimation

Not only is the concept of outward influence helpful in discriminating the relative

influence of nodes but also its sampling technique, IICP, can help scale up the estimation

of influence spread (IE) to billion-scale networks.

Naive approach. A naive approach is to 1) obtain an (ε, δ)-approximation Îout(S) of

Iout(S) using Monte-Carlo estimation 2) return Îout(S) + |S|. It is easy to show that this

approach return an (ε, δ)-approximation for I(S). This approach will require O(ln(2
δ
) 1
ε2
n)

IICP random samples.

However, the naive approach is not optimized to estimate influence due to several

reasons: 1) a loose bound µY = E [Y (S)] ≥ 1 is applied to estimate outward influence;

2) casting from (ε, δ)-approximation of outward influence to (ε, δ)-approximation of in-

fluence introduces a gap that can be used to improve the estimation guarantees. We next

propose more efficient algorithms based on Importance IC Sampling to achieve an (ε, δ)-

approximate of both outward influence and influence spread. Our methods are based on

two effective mean estimation algorithms.

Our approach. Based on the observations that

• 1 ≤ Y (S) ≤ n − |S|, i.e., we know better bounds for Y (S) in comparison to the

cascade size which is in the range [1, n].

• As we want to have an (ε, δ)-approximation for Y (S) + |S|, the fixed add-on |S| can

be leveraged to reduce the number of samples.

We combine the effective RSA algorithm with our Importance IC Polling (IICP) for

estimating the influence spread of a set S. For influence spread estimation, we will analyze

random variables based on samples generated by our Importance IC Polling scheme and

use those to devise an influence estimation algorithm.
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Since outward influence and influence spread differ by an additive factor of |S|, for

each outward sample Y (S) generated by IICP, let define a corresponding variable Z(S),

Z(S) = Y (S) · β0 + |S|, (2.29)

where β0 is defined in Eq. 2.16. We obtain,

• |S|+ β0 ≤ Z(S) ≤ |S|+ β0(n− |S|),

• E [Z(S)] = E [Y (S)] · β0 + |S| = Iout(S) + |S| = I(S),

and thus we can to approximate I(S) by estimating E [Z(S)].

Recall that to estimate the influence I(S) of a seed set S, all the previous works [55,

70, 19] resort to simulating many influence cascades from S and take the average size of

those generated cascades. Let call M (S) the random variable representing the size of such

a influence cascade. Then, we have E [M (S)] = I(S). Although both Z(S) and M (S) can

be used to estimate the influence, they have different variances that lead to difference in

convergence speed when estimating their means. The relation between variances of Z(S)

and M (S) is stated as follows.

Lemma 6. Let Z(S) defined in Eq. 2.29 and M (S) be random variable for the size of a

influence cascade, the variances of Z(S) and M (S) satisfy,

Var[Z(S)] = β0 · Var[M (S)]− (1− β0)I2
out(S) (2.30)

Note that 0 ≤ β0 ≤ 1 and I(S) ≥ |S|. Thus, the variance of Z(S) is much smaller than

M (S). Our proposed RSA on random variables Xi makes use of the variances of random

variables and thus, benefits from the small variance of Z(S) compared to the same algorithm

on the previously known random variables M (S).

Thus, we apply the RSA on random variables generated by IICP to develop Scalable

Influence Estimation Algorithm (SIEA). SIEA is described in Alg. 5 which consists of two
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Algorithm 5: SIEA Algorithm to estimate influence spread
Input: A probabilistic graph G, a set S and ε, δ

Output: Î(S) - an (ε, δ)-estimate of I(S)

Generate two streams of i.i.d. random variables Y (S)
1 , Y

(S)
2 , . . . and

Y
′(S)

1 , Y
′(S)

2 , . . . by IICP algorithm.

Compose two streams Z(S)
1 , Z

(S)
2 , . . . and Z ′(S)

1 , Z
′(S)
2 , . . . from Y

(S)
1 , Y

(S)
2 , . . . and

Y
′(S)

1 , Y
′(S)

2 , . . . using Eq. 2.29.

return Î(S)←RSA(< Z
(S)
1 , · · · >,< Z

′(S)
1 , · · · >, ε, δ)

main steps: 1) generate i.i.d. random variables by IICP and 2) convert those variables to be

used in RSA to estimate influence of S. The results are stated as follows,

Theorem 5. The SIEA algorithm gives an (ε, δ) influence spread estimation. The ob-

served influences (sum of random variables Z(S)) and the number of generated random

variables are in O(ln(2
δ
) 1
ε2

ρZ
I(S)

) and O(ln(2
δ
) 1
ε2

ρZ
I2(S)

), where ρZ = max{εI(S)β0(n− |S| −

1),Var[Z
(S)
i ]}.

Comparison to INFEST [77]. Compared to the most recent state-of-the-art influence

estimation in [77] that requires O(n log5(n)
ε2

) observed influences, the SIEA algorithm incor-

porating IICP sampling with RSA saves at least a factor of log4(n). That is because the

necessary observed influences in SIEA is bounded by O(ln(2
δ
) 1
ε2
β0ρZ
I(S)

). Since Var[Z
(S)
i ] ≤

I(S)(|S|+ β0(n− |S|)− I(S)) ≤ I(S)(n− |S| − 1) and hence, ρZ ≤ I(S)(n− |S| − 1),

when δ = 1
n

as in [77], the observed influences is then,

O(ln(
2

δ
)

1

ε2
ρZ
I(S)

) ≤ O(
n log(2/δ)

ε2
) ≤ O(

n log(n)

ε2
) (2.31)

Consider ε, δ as constants, the observed influences is O(n).
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2.2.4.3 Influence Spread under other Models

We can easily apply the RSA estimation algorithm to obtain an (ε, δ)-estimate of the

influence spread under other cascade models as long as there is a Monte-Carlo sampling

procedure to generate sizes of random cascades. For most stochastic diffusion models,

including both discrete-time models, e.g. the popular LT with a naive sample generator

described in [55], SI and SIR [27] or their variants with deadlines [86], and continuous-

time models [32], designing such a Monte-Carlo sampling procedure is straightforward.

Since the influence cascade sizes are at least the seed size, we always needs at most O(n)

samples.

To obtain more efficient sampling procedures, we can extend the idea of sampling non-

trivial cascade in IICP to other models. Such sampling procedures in general will result in

random variables with smaller variances and tighter bounds on the ranges. In turns, RSA,

that benefits from smaller variance and range, will requires fewer samples for estimation.

2.2.4.4 Parallel Estimation Algorithms

We develop the parallel versions of our algorithms to speed up the computation and

demonstrate the easy-to-parallelize property of our methods. Our main idea is that the

random variable generation by IICP can be run in parallel. In particular, random variables

used in each step of the core RSA algorithm can be generated simultaneously. Recall that

IICP only needs to store a queue of newly active nodes, an array to mark the active nodes

and a single variable Y (S). In total, each thread requires space in order of the number of

active nodes in that simulation, O(Y (S)), which is at most linear with size of the graph

O(n). In fact due to the stopping condition of linear number of observed influences, the

total size of all the threads is bounded by O(n) assumed the number of threads is relatively

small compared to n.
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Moreover, our algorithms can be implemented efficiently in terms of communication

cost in distributed environments. This is because the output of IICP algorithm is just a

single number Y (S) and thus, worker nodes in a distributed environment only communicate

that single number back to the node running the estimation task. Here each IICP node holds

a copy of the graph. However, the programming model needs to be considered carefully.

For instance, as pointed out in many studies that the famous MapReduce is not a good fit

for iterative graph processing algorithms [48, 72].

2.2.5 Experiments

We will experimentally show that Outward Influence Estimation (SOIEA) and Outward-

Based Influence Estimation (SIEA) are not only several orders of magnitudes faster than ex-

isting state-of-the-art methods but also consistently return much smaller errors. We present

empirical validation of our methods on both real world and synthetic networks.

2.2.5.1 Experimental Settings

Algorithms. We compare performance of SOIEA and SIEA with the following algo-

rithms:

• INFEST [77]: A recent influence estimation algorithm by Lucier et al. [77] in

KDD’15 that provides approximation guarantees. We reimplement the algorithm

in C++ accordingly to the description in [77]1.

• MC10K, MC100K: Variants of Monte-Carlo method that generates the traditional in-

fluence cascades [55, 70] to estimate (outward) influence spread.

• MCε,δ: The Monte-Carlo method that uses the traditional influence cascades and

1Through communication with the authors of [77], the released code has some problem
and is not ready for testing.
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guarantees (ε, δ)-estimation. Following [77], MCε,δ is only for measuring the run-

ning time of the normal Monte-Carlo to provide the same (ε, δ)-approximation guar-

antee. In particular, we obtain running time of MCε,δ by interpolating from that from

MC10K, i.e. 1
ε2

ln(1
δ
)nTime(MC10K)

10000
.

Table 2.: Datasets’ Statistics

Dataset #Nodes #Edges Avg. Degree

NetHEP2 15K 59K 4.1
NetPHY2 37K 181K 13.4
Epinions2 75K 841K 13.4
DBLP2 655K 2M 6.1
Orkut2 3M 117M 78.0
Twitter [65] 41.7M 1.5G 70.5
Friendster2 65.6M 1.8G 54.8

2From http://snap.stanford.edu

Table 3.: Comparing performance of algorithms in estimating outward influences

Avg. Rel. Error (%) Max. Rel. Error (%) Running time (sec)

Dataset Edge Models SOIEA MC10K MC100K SOIEA MC10K MC100K SOIEA MC10K MC100K MCε,δ

NetHEP

wc 0.3 1.9 0.6 2.3 25.0 8.9 0.1 0.1 0.1 12.3
p = 0.1 1.0 3.7 1.2 9.7 63.0 17.2 0.2 0.1 1.0 149.5
p = 0.01 0.0 4.5 1.6 0.2 20.2 9.2 0.2 0.1 0.1 8.8
p = 0.001 0.0 19.2 4.6 0.1 100.0 26.4 0.2 0.1 0.1 8.5

NetPHY

wc 0.1 1.4 0.4 1.5 32.8 6.2 0.4 0.1 0.1 34.7
p = 0.1 0.5 4.0 1.3 6.6 46.3 18.5 0.5 0.1 0.5 203.0
p = 0.01 0.0 5.5 1.7 0.2 30.4 10.7 0.6 0.1 0.1 25.0
p = 0.001 0.0 19.1 5.1 0.0 80.0 28.1 0.7 0.1 0.1 24.0

Datasets. We use both real-world networks and synthetic networks generated by GT-

graph [8]. For real world networks, we choose a set of 7 datasets with sizes from tens of

thousands to 65.6 millions. Table 18 gives a summary. GTgraph generates synthetic graphs

with varying number of nodes and edges.

Metrics. We compare the performance of the algorithms in terms of solution qual-

ity and running time. To compare the solution quality, we adopt the relative error which
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Fig. 4.: Error distributions (histogram) of the approximation errors of SOIEA, MC10K,

MC100K on NetHEP

shows how far the estimated number from the “ground truth”. The relative error of outward

influence is computed as follows:

| Îout(S)

Iout(S)
− 1| · 100% (2.32)

where Îout(S) is estimated outward influence of seed set S by the algorithm, Iout(S) is

“ground truth” for S.

Similarly, relative error of influence spread is,

| Î(S)

I(S)
− 1| · 100% (2.33)
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We test the algorithms on estimating different seed set sizes. For each size, we gen-

erate a set of 1000 random seed sets. We will report the average relative error (Avg. Rel.

Error) and maximum relative error (Max. Rel. Error).

Ground-truth computation. We use estimates of influence and outward influence

with a very small error corresponding to the setting ε = 0.005, δ = 1/n. We note that

previous researches [77, 105] compute the “ground truth” by running Monte-Carlo with

10,000 samples which is not sufficient as we will show later in our experiments.

Parameter Settings. For each of the datasets, we consider two common edge weight-

ing models:

• Weighted Cascade (WC): The weight of edge (u, v) is calculated as w(u, v) =

1
din(v)

where din(v) denotes the in-degree of node v, as in [19, 106, 25, 105, 84].

• Constant model: All the edges has the same constant probability p as in [55, 19,

25]. We consider three different values of p, i.e. 0.1, 0.01, 0.001.

We set ε = 0.1, δ = 1/n for SOIEA and SIEA by default or explicitly stated other-

wise.

Environment. All algorithms are implemented in C++ and compiled using GCC

4.8.5. We conduct all experiments on a CentOS 7 workstation with two Intel Xeon 2.30GHz

CPUs adding up to 20 physical cores and 250GB RAM.

2.2.5.2 Outward Influence Estimation

We compare SOIEA against MC10K and MC100K in four different edge models on

NetHEP and NetPHY dataset. The results are presented in Table 3 and Figure 4.

Solution Quality: Table 3 illustrates that the outward influences computed by SOIEA

consistently have much smaller errors in both average and maximum cases than MC10K and

MC100K in all edge models. In particular, on NetHEP with p = 0.001 edge model, SOIEA
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has average relative error close to 0% while it is 19.2% and 4.6% for MC10K, MC100K

respectively; the maximum relative errors of MC10K, MC100K in this case are 100%, 26.4%

which are much higher than SOIEA of 0.1%. Apparently, MC100K has smaller error rate

than MC10K since it uses 10 times more samples.

Figure 4 shows error distributions of SOIEA, MC10K, and MC100K on NetHEP. In all

considered edge models, SOIEA’s error highly concentrates around 0% while errors of

MC10K and MC100K wildly spread out to a very large spectrum. In particular, SOIEA has

a huge spike at the 0 error while both MC10K and MC100K contain two heavy tails in two

sides of their error distributions. Moreover, when p gets smaller, the tails get larger as more

and more empty influence simulations are generated in the traditional method.

Running Time: From Table 3, the running time of MC10K and MC100K is close to

that of SOIEA while MCε,δ takes up to 700 times slower than the others. Thus, in order

to achieve the same approximation guarantee as SOIEA, the naive Monte-Carlo will need

700 more time than SOIEA.

Overall, SOIEA achieves significantly better solution quality and runs substantially

faster than Monte-Carlo method. With larger number of samples, Monte-Carlo method can

improve the quality but the running time severely suffers.

2.2.5.3 Influence Spread Estimation

This experiment evaluates SIEA by comparing its performance with the most recent

state-of-the-art INFEST and naive Monte-Carlo influence estimation. Here, we use WC

model to assign probabilities for the edges. We set the ε parameter for INFEST to 0.4 since

we cannot run with smaller value of ε for this algorithm. Note that INFEST guarantees an

error of (1 + 8ε), which is equivalent to a maximum relative error of 320%. For a fair

comparison, we also run SIEA with ε = 0.4. We use the gold-standard 10000 samples for

the Monte-Carlo method (MC10K). We set a time limit of 6 hours for all algorithms.
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Table 4.: Comparing performance of algorithms in estimating influence spread in WC

Model (seed set size |S| = 1)

Avg. Rel. Error (%) Max. Rel. Error (%) Running time (sec.)

Dataset SIEA MC10K INFEST SIEA MC10K INFEST SIEA SIEA (16 cores) MC10K MCε,δ INFEST

NetHEP 0.2 1.2 17.7 1.5 6.6 82.7 0.1 0.1 0.0 0.8 3417.6
NetPHY 0.1 0.4 22.9 0.6 5.3 43.0 0.1 0.1 0.0 2.6 8517.7
Epinions 0.9 5.3 n/a 5.2 19.7 n/a 0.2 0.1 0.0 21.9 n/a
DBLP 0.3 1.2 n/a 1.9 8.7 n/a 2.8 1.3 0.1 770.4 n/a
Orkut 0.5 3.0 n/a 3.2 16.0 n/a 54.2 4.76 2.9 8.2 · 104 n/a
Twitter 1.0 37.1 n/a 3.1 240.8 n/a 1272.3 106.2 7.9 3.5 · 106 n/a
Friendster 0.1 3.1 n/a 0.6 23.6 n/a 1510.1 165.1 2.8 2.1 · 106 n/a

Table 5.: Comparing performance of algorithms in estimating influence spread in WC

Model (seed set size |S| = 5%|V |)

Avg. Rel. Error (%) Max. Rel. Error (%) Running time (sec.)

Dataset SIEA MC10K INFEST SIEA MC10K INFEST SIEA SIEA (16 cores) MC10K MCε,δ INFEST

NetHEP 0.1 0.0 11.1 0.4 0.2 14.1 0.1 0.1 2.1 191.7 600.5
NetPHY 0.1 0.0 24.4 0.2 0.1 26.3 0.1 0.1 5.3 1297.1 3326.4
Epinions 0.2 0.1 20.2 0.4 0.2 23.8 0.3 0.1 20.1 1.1 · 104 9325.6
DBLP 0.0 1.8 n/a 0.2 1.9 n/a 3.5 0.3 184.9 1.0 · 106 n/a
Orkut 0.1 0.0 n/a 0.7 0.1 n/a 51.6 4.6 5322.8 1.5 · 108 n/a
Twitter 0.2 n/a n/a 0.5 n/a n/a 1061.6 93.5 n/a n/a n/a
Friendster 0.1 n/a n/a 0.2 n/a n/a 2068.8 183.1 n/a n/a n/a

Solution Quality: Table 4 presents the solution quality of the algorithms in estimating

size 1 seed sets, i.e. |S| = 1. It shows that SIEA consistently achieves substantially higher

quality solution than both INFEST and MC10K. Note that INFEST can only run on NetHEP

and NetPHY under time limit. The average relative error of INFEST is 88 to 229 times

higher than SIEA while its maximum relative error is up to 82% compared to the ground

truth. The large relative error of INFEST is explained by its loose guaranteed relative

error (320%). Whereas, the average relative error of MC10K is up to 37 times higher than

SIEA. The maximum relative error of MC10K is up to 240% higher than the ground truth

on Twitter dataset that demonstrates the insufficiency of using 10000 traditional influence

samples to get the ground truth.

Differ from Table 4, Table 5 shows the results in estimating influences of seed sets of
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size 5% the total number of nodes. Under 6 hour limit, INFEST can only run on NetHEP,

NetPHY, and Epinions while MC10K could not handle the large Twitter and Friendster

graph. INFEST still has a very high error compared to the other two while SIEA and

MC10K returns the similar quality solutions. This is because 5% of the nodes is an enor-

mous number, i.e. > 1000000 for Friendster, and thus, the influence is huge and very few

samples are needed regardless of using the traditional method or IICP.

Running Time: In both cases of two seed set sizes, SIEA vastly outperforms MCε,δ

and INFEST by several orders of magnitudes. INFEST is up to 105 times slower than

SIEA and can only run on small networks, i.e. NetHEP, NetPHY and Epinions. Compared

with MCε,δ, the speedup factor is around 104, thus, MC10K cannot run for the two largest

networks, Twitter and Friendster in case |S| = 5%|V |.

We also test the parallel version of SIEA. With 16 cores, SIEA runs about 12 times

faster than that on a single core in large networks achieving an effective factor of around

75%.

Overall, SIEA consistently achieves much better solution quality and run significantly

fastest than INFEST and the naive MC method. Surprisingly, under time limit of 6 hours,

INFEST can only handle small networks and has very high error. The MC method achieves

better accuracy for large seed sets, however, its running time increases dramatically result-

ing in failing to run on large datasets.

2.2.5.4 Scalability Test

We test the scalability of the single core and parallel versions of our method on syn-

thetic networks generated by the well-known GTgraph with various network sizes. We also

carry the same tests on the real-world Twitter network in comparison with the MC.

On Synthetic Datasets: We generate synthetic graphs using GTgraph[8], a standard

graph generator used widely in large scale experiments on graph algorithms [49, 5, 12].
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Fig. 5.: Running time of SIEA on synthetic networks
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We generate graphs with number of nodes n ∈ {105, 106, 107, 108}. For each size n, we

generate 3 different graphs with average degree d ∈ {10, 20, 30}. We use the WC model

to assign edge weights. We run SIEA with different number of cores C = {1, 4, 16}

Figure 5 reports the time SIEA spent to estimate influence spread of seed set of size 1.

With the same number of nodes, we see that the running time of SIEA does not significantly

increase as the average degree increases. Figure 5b views Figure 5a in logarithmic scale

to show the linear increase of running time with respect to the increases of nodes. As
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Table 6.: Comparing performance of algorithms in estimating influence spread in LT model

(seed set size |S| = 1)

Avg. Rel. Error (%) Max. Rel. Error (%) Running time (sec.)

Dataset SIEALT MC10K MC100K SIEALT MC10K MC100K SIEALT SIEALT (16 cores) MC10K MC100K MCε,δ

NetHEP 1.6 1.6 0.6 8.4 7.9 2.5 0.0 0.0 0.0 0.1 1.0
NetPHY 1.2 0.5 0.3 12.7 4.4 1.4 0.0 0.0 0.0 0.1 2.9
Epinions 1.5 4.3 2.2 7.0 17.4 7.4 0.7 0.4 0.0 0.4 24.5
DBLP 0.4 1.0 0.5 5.7 11.4 2.2 2.4 0.4 0.3 2.5 1530.4
Orkut 0.5 3.3 1.1 1.9 22.1 5.9 249.4 25.0 8.5 84.2 4.6 · 104

Twitter 2.4 36.1 20.7 7.1 97.5 85.6 6820.0 548.6 32.2 287.6 1.4 · 107

Friendster 0.2 3.1 1.4 2.4 16.5 9.0 6183.9 701.8 20.4 137.8 9.3 · 106

expected, SIEA speeds up proportionally to number of cores used. As a result, SIEA with

16 cores is able to estimate influence spread of a random node on a synthetic graph of 100

million nodes and 1.5 billion of edges in just 5 minutes.

On Twitter Dataset: Figure 6 evaluates the performance of SIEA in comparison with

MC10K on various seed set sizes |S| = {1, 10, 100, 1k, 10k} on Twitter dataset. On all the

sizes of seed sets, SIEA consistently has average and maximum relative errors smaller than

10% (Figure 6a). The maximum relative error of MC10K goes up to 244% with seed set

size |S| = 1. As observed in experiments with large size seed sets, both SIEA and MC10K

have similar error rate with seed set size |S| = 10000.

In terms of running time, as the seed set size increases in powers of ten, SIEA’s

running time increases in much lower pace, e.g. few hundreds of seconds, while MCε,δ

consumes proportionally more time (Figure 6b). Figure 6b also evaluates parallel imple-

mentation of SIEA by varying number of CPU cores C = {1, 2, 4, 8, 16}. The running

time of SIEA reduces almost two times every time the number of cores doubles confirming

the almost linear speedup.

Altogether, the parallel implementation of SIEA shows a linear speedup behavior with

respect to the number of cores used. On the same network with size of seed sets linearly

grows, SIEA requires slightly more time to estimate influence spread while Monte-Carlo
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shows a linear runtime requirement. Throughout the experiments, SIEA always guarantees

small error rate within ε.

2.2.5.5 Influence Estimation under LT Model

We illustrate the generality of our algorithms in various diffusion model by adapting

SIEA for the LT model by only replacing IICP with the sampling algorithm for the LT

[55]. The algorithm is then named SIEALT . The setting is similar to the case of IC. We

present the results of SIEALT compared with MC10K, MC100K, MCε,δ in Table 6. INFEST

is initially proposed for the IC model, thus, we results for INFEST under the LT model are

not available.

The results are mostly consistent with those observed under the IC model. SIEALT

obtains significantly smaller errors and runs in order of magnitudes faster than the counter-

parts. The results again confirm that the estimation quality of MC using 10K samples is

not good enough to be considered as gold-standard quality benchmark.

2.2.6 Related work

In a seminal paper [55], Kempe et al. formulated and generalized two important in-

fluence diffusion models, i.e. Independent Cascade (IC) and Linear Threshold (LT). This

work has motivated a large number of follow-up researches on information diffusion [54,

19, 11, 77, 25, 92] and applications in multiple disciplines [70, 51, 62]. Kempe et al. [55]

proved the monotonicity and submodularity properties of influence as a function of sets

of nodes. Later, Chen et al. [19] proved that computing influence under these diffusion

models is #P-hard.

Most existing works uses the naive influence cascade simulations to estimate influ-

ences [55, 70, 19, 77]. Most recently, Lucier et al. [77] proposed an estimation algorithm

with rigorous quality guarantee for a single seed set. The main idea is guessing a small in-
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terval of size (1 + ε) that the true influence falls in and verifying whether the guess is right

with high probability. However, their approach is not scalable due to a main drawback that

the guessed intervals are very small, thus, the number of guesses as well as verifications

made is huge. As a result, the method in [77] can only run for small dataset and still takes

hours to estimate a single seed set. They also developed a distributed version on MapRe-

duce however, graph algorithms on MapReduce have various serious issues [48, 72].

Influence estimation oracles are developed in [25, 92] which take advantage of sketch-

ing the influence to preprocess the graph for fast queries. Cohen et al. [25] use the novel

bottom-k min-hash sketch to build combined reachability sketches while Ohsaka et al. in

[92] adopt the reverse influence sketches. [92] also introduces the reachability-true-based

technique to deal with dynamic changes in the graphs. However, these methods require

days for preprocessing in order to achieve fast responses for multiple queries.

There have also been increasing interests in many related problems. [14, 43] focus on

designing data mining or machine learning algorithms to extract influence cascade model

parameters from real datasets, e.g. action logs. Influence Maximization, which finds a seed

set of certain size with the maximum influence among those in the same size, found many

real-world applications and has attracted a lot of research work [55, 70, 19, 83, 11, 105, 80,

84].

2.2.7 Conclusion

This paper investigates a new measure, called Outward Influence, for nodes’ influence

in social networks. Outward influence inspires new statiscal algorithms, namely Impor-

tance IC Polling (IICP) and Robust Mean Estimation (RSA) to estimate influence of nodes

under various stochastic diffusion models. Under the popular IC model, the IICP leads

to an FPRAS for estimating outward influence and SIEA to estimate influence spread.

SIEA is Ω(log4(n)) times faster than the most recent state-of-the-art and experimentally
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outperform the other methods by several orders of magnitudes. As previous approaches

to compute ground truth influence can result in high error and long computational time,

our algorithms provides concrete and scalable tools to estimate ground-truth influence for

research on network cascade and social influence.

2.2.8 Appendix

2.2.8.1 Proof of Lemma 1

Recall that on a sampled graph g ∼ G, for a set S ⊆ V , we denote r(o)
g (S) to be the

set of nodes, excluding the ones in S, that are reachable from S through live edges in g, i.e.

r
(o)
g (S) = rg(S)\S. Alternatively, r(o)

g (S) is called the outward influence cascade of S on

sample graph g and, consequently, we have,

Iout(S) =
∑
g∼G

|r(o)
g (S)|Pr[g ∼ G]. (2.34)

It is sufficient to show that |r(o)
g (S)| is submodular, as Iout(S) is a linear combination of

submodular functions. Consider a sample graph g ∼ G, two sets S, T such that S ⊆ T ⊆ V

and v ∈ V \T . We have three possible cases:

• Case v ∈ r
(o)
g (S): then v ∈ r

(o)
g (T ) since S ⊆ T and v /∈ T . Thus, we have the

following,

r(o)
g (S ∪ {v})− r(o)

g (S) = r(o)
g (T ∪ {v})− r(o)

g (T ) = −1. (2.35)

• Case v /∈ r(o)
g (S) but v ∈ r(o)

g (T ): We have that,

r(o)
g (S ∪ {v})− r(o)

g (S) = |r(o)
g ({v})\(r(o)

g (S) ∪ S)| ≥ 0, (2.36)
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while r(o)
g (T ∪ {v})− r(o)

g (T ) = −1. Thus,

r(o)
g (S ∪ {v})− r(o)

g (S) > r(o)
g (T ∪ {v})− r(o)

g (T ). (2.37)

• Case v /∈ r(o)
g (T ): Since ∀u ∈ r(o)

g (S) ∪ S, we have either u ∈ r(o)
g (T ) or u ∈ T or

r
(o)
g (S) ∪ S ⊆ r

(o)
g (T ) ∪ T , and thus,

r(o)
g (S ∪ {v})− r(o)

g (S) = |r(o)
g ({v})\(r(o)

g (S) ∪ S)|

≥ |r(o)
g ({v})\(r(o)

g (T ) ∪ T )| = r(o)
g (T ∪ {v})− r(o)

g (T ). (2.38)

In all three cases, we have,

r(o)
g (S ∪ {v})− r(o)

g (S) ≥ r(o)
g (T ∪ {v})− r(o)

g (T ). (2.39)

Applying Eq. 2.39 on all possible g ∼ G and taking the sum over all of these inequalities

give

∑
g∼G

(r(o)
g (S ∪ {v})− r(o)

g (S)) Pr[g ∼ G]

≥
∑
g∼G

(r(o)
g (T ∪ {v})− r(o)

g (T )) Pr[g ∼ G],

or,

Iout(S ∪ {v})− Iout(S) ≥ Iout(T ∪ {v})− Iout(T ). (2.40)

That completes the proof.
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2.2.8.2 Proof of Lemma 4

Let Ω+
W be the probability space of all possible cascades from S. For any cascade

W (S) ⊇ S, the probability of that cascade in Ω+
W is given by

Pr[W (S) ∈ Ω+
W ] =

∑
g∈ΩG ,g W (S)

Pr[g ∈ ΩG],

where g  W (S) means that W (S) is the set of reachable nodes from S in g.

Let ΩW be the probability space of non-trivial cascades. According to the Stage 1 in

IICP, the probability of the trivial cascade is:

Pr[S ∈ ΩW ] = 0.

Comparing to the mass of cascades in Ω+
W , the probability mass of the trivial cascade S

in ΩW is redistributed proportionally to other cascades in ΩW . Specifically, according to

line 2 in IICP, the probability mass of all the non-trivial cascades in ΩW is multiplied by a

factor 1/β0. Thus,

Pr[W (S) ∈ Ω+
W ] = Pr[W (S) ∈ ΩW ] · β0 ∀W (S) 6= S.

It follows that

Iout(S) =
∑

W (S)∈Ω+
W

|W (S) \ S| · Pr[W (S) ∈ Ω+
W ] (2.41)

=
∑

W (S)∈ΩW

|W (S) \ S| · Pr[W (S) ∈ ΩW ]β0 (2.42)

= E [|W (S)|] · β0 = E [Y (S)] · β0. (2.43)

We note that for W (S) = S, |W (S) \ S| = 0. Thus the difference in the probability masses

between the two probabilistic spaces does not affect the 2nd step.
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2.2.8.3 Proof of Theorem 2

We will equivalently prove two probabilistic inequalities:

Pr[µ̂X < (1− ε)µX ] ≤ δ

2
, (2.44)

and

Pr[µ̂X > (1 + ε)µX ] ≤ δ

2
. (2.45)

Prove Eq. 2.44. We first realize that at termination point of Alg. 2, due to the stopping

condition h =
∑T

j=1 Xj ≥ Υ and Xj ≤ b,∀j, the following inequalities hold,

Υ ≤
T∑
j=1

Xj ≤ Υ + b. (2.46)

The left hand side of Eq. 2.44 is rewritten as follows,

Pr[µ̂X < (1− ε)µX ] = Pr
[∑T

j=1 Xj

T
< (1− ε)µX

]
(2.47)

= Pr
[ T∑
j=1

Xj < (1− ε)µXT
]

(2.48)

≤ Pr[Υ < (1− ε)µXT ]. (2.49)

The last inequality is due to our realization in Eq. 2.46. Assume that ε < 1 and µX > 0, let

denote L1 = d Υ
(1−ε)µX

e. We then have,

L1 ≥
Υ

(1− ε)µX
⇒ Υ

L1

≤ (1− ε)µX , (2.50)

and

L1 >
Υ

µX
> (2 +

2

3
ε) ln(

2

δ
)

1

ε′2µX
(b− a). (2.51)
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Thus, from Eq. 2.49, we obtain,

Pr[µ̂X < (1− ε)µX ] ≤ Pr[L1 ≤ T ] = Pr
[ L1∑
j=1

Xj ≤
T∑
j=1

Xj

]
≤ Pr

[ L1∑
j=1

Xj ≤ Υ + b
]

(2.52)

≤ Pr
[∑L1

j=1Xj

L1

≤ Υ + b

L1

]
, (2.53)

where the second inequality is due to Eq. 2.46. Note that
∑L1
j=1Xj

L1
is an estimate of µX using

the firstL1 random variablesX1, . . . , XL1 . Furthermore, from Eq. 2.50 that Υ
L1
≤ (1−ε)µX ,

we have,

Υ + b

L1

≤ (1− ε)µX +
b

L1

= (1− ε+
b

L1µX
)µX . (2.54)

Since L1 > (2 + 2
3
ε) ln(2

δ
) 1
ε′2µX

(b− a) from Eq. 2.51,

Υ + b

L1

≤
(

1− ε+
ε2b

(2 + 2
3
ε) ln(2

δ
)(b− a)

)
µX = (1− ε′)µX . (2.55)

Plugging these into Eq. 2.53, we obtain,

Pr[µ̂X < (1− ε)µX ] ≤ Pr
[ L1∑
j=1

Xj ≤ (1− ε′)µXL1

]
. (2.56)

Now, apply the Chernoff-like bound in Eq. 2.26 with T = L1 and note that L1 > (2 +

2
3
ε) ln(2

δ
) 1
ε′2µX

(b− a) > 2 ln(2
δ
) 1
ε′2µX

(b− a), we achieve,

Pr[µ̂X < (1− ε)µX ] ≤ exp
(
− ε′2L1µX

2(b− a)

)
(2.57)

≤ exp
(
−
ε′22 ln(2

δ
) 1
ε′2µX

(b− a)

2(b− a)

)
=
δ

2
. (2.58)

That completes the proof of Eq. 2.44.
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Prove Eq. 2.45. The left hand side of Eq. 2.45 is rewritten as follows,

Pr[µ̂X > (1 + ε)µX ] = Pr
[ T∑
j=1

Xj > (1 + ε)µXT
]

(2.59)

≤ Pr[Υ + b > (1 + ε)µXT ], (2.60)

where the last inequality is due to our observation that
∑T

j=1Xj ≤ Υ + b. Under the same

assumption that 0 < µX ≤ b
1+ε

, we denote L2 = b Υ+b
(1+ε)µX

c. We then have,

L2 ≥
Υ

(1 + ε)µX
= (2 +

2

3
ε) ln(

2

δ
)

1

ε′2µX
(b− a), (2.61)

and

L2 ≤
Υ + b

(1 + ε)µX
⇒ Υ + b

L2

≥ (1 + ε)µX (2.62)

⇒ Υ

L2

≥ (1 + ε)µX −
b

L2

= (1 + ε− b

L2µX
)µX (2.63)

⇒ Υ

L2

≥
(

1 + ε− ε2b

(2 + 2
3
ε) ln(2

δ
)(b− a)

)
µX = (1 + ε′)µX (2.64)

Thus, from Eq. 2.60, we obtain,

Pr[µ̂X >(1 + ε)µX ] ≤ Pr[L2 ≥ T ] = Pr
[ L2∑
j=1

Xj ≥
T∑
j=1

Xj

]
≤ Pr

[ L2∑
j=1

Xj ≥ Υ
]

= Pr
[∑L2

j=1Xj

L2

≥ Υ

L2

]
(2.65)

≤ Pr
[∑L2

j=1Xj

L2

≥ (1 + ε′)µX

]
(2.66)

where the last inequality follows from Eq. 2.64. By applying another Chenoff-like bound

from Eq. 2.25 combined with the lower bound on L2 in Eq. 2.61, we achieve,

Pr[µ̂X > (1 + ε)µX ] ≤ exp
(
− ε′2L2µX

(2 + 2
3
ε)(b− a)

)
=
δ

2
, (2.67)

which completes the proof of Eq. 2.45.
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Follow the same procedure as in the proof of Eq. 2.45, we obtain the second statement

in the theorem that,

Pr[T ≤ (1 + ε)Υ/µX ] > 1− δ/2, (2.68)

which completes the proof of the whole theorem.

More elaborations on the hold in [26]. The stopping rule algorithm in [26] is de-

scribed in Alg. 6.

Algorithm 6: Stopping Rule Algorithm [26]
Input: Random variables X1, X2, . . . and 0 < ε, δ < 1
Output: An (ε, δ)-approximate of µX = E[Xi]
Compute: Υ1 = 1 + (1 + ε)4(e− 2) ln(2

δ ) 1
ε2

;
Initialize h = 0, T = 0;
while h < Υ1 do

h← h+XT , T ← T + 1;
end
return µ̂X = Υ1/T ;

The algorithm first computes Υ1 and then, generates samples Xj until the sum of their

outcomes exceed Υ1. Afterwards, it returns Υ1/T as the estimate. Apparently, Υ1/T is a

biased estimate of µX since
∑T

j=1 Xj ≥ Υ1.

An important realization for this algorithm from our proof of Theorem 2 is that Υ1 ≤∑T
j=1 Xj ≤ Υ1 + b with b = 1 for [0, 1] random variables. In section 5 of [26], following

the proof of Pr[µ̂X > (1 + ε)µX ] ≤ δ/2 to prove Pr[µ̂X < (1− ε)µX ] ≤ δ/2, there is step

that derives as follows: Pr[L1 ≤ T ] = Pr
[∑L1

j=1Xj ≤
∑T

j=1Xj

]
= Pr

[∑L1

j=1Xj ≤ Υ1

]
where L1 is a predefined number, i.e. L1 = b Υ1

(1−ε)µX
c. However, since Υ1 ≤

∑T
j=1 Xj ≤

Υ1 +b, the last equality does not hold. This is based on Eq. 2.52 with the correct expression

being Pr
[∑L1

j=1Xj ≤ Υ + b
]

instead of Pr
[∑L1

j=1Xj ≤ Υ
]
.
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2.2.8.4 Proof of Theorem 3

[Proof of Part (1)] If ε ≥ 1/4, then RSA only runs GSRA and hence, from Theo-

rem 2, the returned solution satisfies the precision requirement. Otherwise, since the first

steps is literally applying GSRA with
√
ε < 1/2, δ/3, we have,

Pr[µX(1−
√
ε) ≤ µ̂′X ≤ µX(1 +

√
ε)] ≥ 1− δ/3 (2.69)

We prove that in step 2, ρ̂X ≥ ρX/2. Let define the random variables ξi = (X ′2i−1 −

X ′2i)
2/2, i = 1, 2, . . . and thus, E [ξi] = Var[X]. Consider the following two cases.

1. If Var[X] ≥ εµX(b− a), consider two sub-cases:

(a) If Var[X] ≥ 2(1 −
√
ε)εµX(b − a), then since Nσ = Υ2ε/µ̂

′
X ≥ 2

1−
√
ε
(1 +

ln(3
2
)/ ln(2

δ
))Υε/µX , applying the Chernoff-like bound in Eq. 2.24 gives,

Pr[Var[X]/2 ≤ ∆/Nσ] ≥ 1− δ/3 (2.70)

Thus, ρ̂X ≥ Var[X]/2 = ρX/2 with a probability of at least 1− δ/3.

(b) If Var[X] ≤ 2(1 −
√
ε)εµX(b − a), then εµX(b − a) ≥ Var[X]/(2(1 −

√
ε))

and therefore, ρ̂X ≥ εµ̂′X(b− a) ≥ (1−
√
ε)εµX(b− a) ≥ VarX/2 = ρX/2.

2. If Var[X] ≤ εµX(b − a), it follows that ρ̂X ≥ εµ̂X ≥ ρX(1 −min{
√
ε, 1/2}) with

probability at least 1− δ/3.

Thus, after steps 1 and 2, 21+
√
ε

1−
√
ε
ρ̂X/µ̂

′2
X ≥ ρX/µ

2
Z with probability at least 1 − δ/3. In

step 3, since T = Υ2ρ̂X/(µ̂
′2
X(b − a)) ≥ (1 + ln(3

2
)/ ln(2

δ
))ΥρX/(µ

2
X(b − a)) and hence,

applying the Chernoff-like bound in Eq. 2.27 again gives,

Pr[µX(1− ε) ≤ µ̂X ≤ µX(1 + ε)] ≥ 1− 2δ/3. (2.71)
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Accumulating the probabilities, we finally obtain,

Pr[µX(1− ε) ≤ µ̂X ≤ µX(1 + ε)] ≥ 1− δ, (2.72)

This completes the proof of part (1).

[Proof of Part (2)] The RSA algorithm may fail to terminate after usingO(ΥρX/(µ
2
X(b−

a))) samples if either:

1. The GSRA algorithm fails to return an (
√
ε, δ/3)-approximate µ̂′X with probability

at most δ/2, or,

2. In step 2, for Var[X] ≤ 2(1−
√
ε)εµX(b− a), ρ̂X is not O(εµX(b− a)) with proba-

bility at most δ/2.

From Theorem 2, with T = (1 + ε)Υ/µX = O(ΥρX/(µ
2
X(b − a))), the first case

happens with probability at most δ/2. In addition, we can show similarly to Theorem 2

that if Var[X] ≤ 2εµX(b− a), then,

Pr[∆/T ≥ 4εµX(b− a)] ≤ exp(−TεµX(b− a)/2). (2.73)

Thus, for T ≥ 2Υε/µX , we have Pr[∆/T ≥ 4εµX ] ≤ δ/2.
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2.2.8.5 Proof of Lemma 6

We start with the computation of Var[Z(S)] with a note that E [Z(S)] = I(S),

Var[Z(S)] =

(n−|S|)β0+|S|∑
z=β0+|S|

(z − E [Z(S)])2 Pr[Z(S) = z]

=

n−|S|∑
y=1

(yβ0 + |S| − I(S))2 Pr[Y (S) = y]

=

n−|S|∑
y=1

(yβ0 − Iout(S)β0 + Iout(S)β0 + |S| − I(S))2 Pr[Y (S) = y]

= β2
0

n−|S|∑
y=1

(y − Iout(S))2 Pr[Y (S) = y]

+

n−|S|∑
y=1

(Iout(S)β0 + |S| − I(S))2 Pr[Y (S) = y]

+ 2β0

n−|S|∑
y=1

(y − Iout(S))(Iout(S)β0 + |S| − I(S)) Pr[Y (S) = y]

Since Y (S) ≥ 1 and Pr[Y (S) = y] = Pr[M(S)=y+|S|]
β0

, we have,

n−|S|∑
y=1

(y − Iout(S))2 Pr[Y (S) = y] =
1

β0

n∑
m=1+|S|

(m− E [M (S)])2 Pr[M (S) = m]

=
1

β0

n∑
m=|S|

(m− E [M (S)])2 Pr[M (S) = m]− 1

β0

I2
out(S)(1− β0)

=
1

β0

(Var[M (S)]− I2
out(S)(1− β0)), (2.74)

and,
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n−|S|∑
y=1

β0(y − Iout(S))(Iout(S)β0 + |S| − I(S)) Pr[Y (S) = y]

= (Iout(S)β0 + |S| − I(S))

n−|S|∑
y=1

(y − Iout(S)) Pr[Y (S) = y]

= (Iout(S)β0 + |S| − I(S))Iout(S)(1/β0 − 1). (2.75)

Plug these back in the Var[Z(S)], we obtain,

Var[Z(S)] = β0(Var[M (S)]− I2
out(S)(1− β0)) + (Iout(S)β0 + |S| − I(S))2

+ 2β0(Iout(S)β0 + |S| − I(S))Iout(S)(1/β0 − 1)

= β0 · Var[M (S)]− (1− β0)I2
out(S) (2.76)

That completes the computation.

2.3 Importance Sketching for Influence Estimation in Billion-scale Networks

Summary of contribution:

• At the central of our sketch is an importance sampling algorithm to sample non-

singular cascades (Alg. 7). For simplicity, we first present the sketch and its sampling

algorithm using the popular independent cascade model [55], and later extend them

to other diffusion models.

• We provide general frameworks to apply SKIS for existing algorithms for the in-

fluence estimation and influence maximization problems. We provide theoretical

analysis to show that using SKIS leads to improved influence estimation oracle due

to smaller sample variances and better concentration bounds; and that the state-

of-the-art methods for influence maximization like D-SSA [84], IMM [105], and,

TIM+/TIM++[106] can also immediately benefit from our new sketch.
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• We conduct comprehensive empirical experiments to demonstrate the effectiveness

of our sketch in terms of quality, memory and computational time. Using SKIS, we

can design high-quality influence oracle for seed set with average estimation error

up to 10x times smaller than those using RIS and 6x times those using SKIM. In

addition, our influence maximization using SKIS substantially improves the quality

of solutions for greedy algorithms. It achieves up to 10x times speed-up and 4x

memory reduction for the fastest RIS-based D-SSA algorithm, while maintaining

the same theoretical guarantees.

2.3.1 Preliminaries

Frequently used notations are summarized in Table 24.

Table 7.: Table of notations

Notation Description

n,m #nodes, #edges of graph G = (V,E,w).

I(S), Î(S) Expected Influence of S ⊆ V and an estimate.

N in(S) Set of in-neighbor nodes of S.

γv,Γ γv = 1−Πu∈N in(v)(1− w(u, v)); Γ =
∑

v∈V γv.

γ0 γ0 =
∑

v∈V γv/n.

Rj ,R A random ROIS sample and a SKIS sketch.

CovR(S) CovR(S) = |Rj ∈ R|Rj ∩ S 6= ∅|.

2.3.2 Influence Estimation/Maximization Problems

We describe the tasks of Influence Estimation and Maximization which are used to

evaluate sketches’ efficiency.

Definition 4 (Influence Estimation (IE)). Given a probabilistic graph G and a seed set of

nodes S ⊆ V , the IE problem asks for a close estimation Î(S) of the influence spread I(S).
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Definition 5 (Influence Maximization (IM) [55]). Given a probabilistic graph G, a budget

k, the IM problem asks to identify a subset Sk ⊂ V with the maximum influence among all

subsets of size at most k,

Sk = arg max
S⊆V,|S|≤k

I(S). (2.77)

2.3.3 Sketch-based Methods for IE/IM

We summarize and analyze below the two existing sketch-based approaches for IE/IM.

2.3.3.1 Reverse Influence Sketch (RIS)

Essentially, a random RIS sample, denoted by Rj , contains a random set of nodes,

following a diffusion model, that can influence a randomly selected source node, denoted

by src(Rj). A RIS sample is generated in three steps:

1) Select a random node v ∈ V which serves as src(Rj).

2) Generate a sample graph g ∼ G.

3) Return the set Rj of nodes that can reach v in g.

Thus, the probability of generating a particular RIS sampleRj can be computed based

on the source selection and the sample graphs that has Rj as the set of nodes that reach

src(Rj) in g. Let denote such set of nodes that can reach to a node v in sample graph g by

η−g (v). We have,

Pr[Rj] =
1

n

∑
g,η−g (src(Rj))=Rj

Pr[g]. (2.78)

The key property of RIS samples for influence estimation/maximization is stated in

the following lemma.

Lemma 7 ([11]). Given a random RIS sample Rj generated from G = (V,E,w), for a set

68



www.manaraa.com

S ⊆ V of nodes, we have,

I(S) = n · Pr[Rj ∩ S 6= ∅]. (2.79)

Thus, estimating/maximizing I(S) is equivalent to estimating/maximizing the proba-

bility Pr[Rj ∩ S 6= ∅].

Using RIS samples for IE/IM. Thanks to Lemma 7, a general strategy for IE/IM is

generating a set of RIS samples, then returning an empirical estimate of Pr[Rj ∩S 6= ∅] on

generated samples for IE or the set Ŝk that intersects with most samples for IM. The strong

advantage of RIS is the reuse of samples to estimate influence of any seed set S ⊆ V .

Ohsaka et al. [92] build a query system to answer influence queries. [Nguyen173, 11, 106,

105, 84] recently use RIS samples in solving Influence Maximization problem with great

successes, i.e. handling large networks with tens of millions of nodes and billions of edges.

2.3.3.2 Combined Reachability Sketch (SKIM)

Cohen et al. [25] proposed the combined reachability sketch which can be used to es-

timate influences of multiple seed sets. Each node u in the network is assigned a combined

reachability sketch which is a bottom-k min-hash sketch of the set of nodes reachable from

u in l sample graphs. [25] generates l sample graphs g of G, i.e. l = 64 by default, and

build a combined reachability sketch of size k for each node.

The influence estimate of a seed set S is computed by taking the bottom-k sketch of

the union over all the sketches of nodes in S and applying the cardinality estimator [25].

Using the sketches, the solution for IM is found by following the greedy algorithm which

repeatedly adds a node with highest marginal influence into the solution. Here, the marginal

influences are similarly estimated from node sketches.

Common Shortcomings. According to recent benchmarks [Arora17] and our own

empirical evaluations (details in Section 2.3.8), both RIS and SKIM yield significant in-
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(b) Weighted Cascade (WC)

Fig. 7.: Distribution of reversed cascade sizes on various real-world networks with two popular
different edge weight models: Trivalency (TRI) and Weighted Cascade (WC). The majority of the
cascades are singular.

fluence estimation errors. For RIS, it is due to the fact that the majority of RIS samples

contain only their sources as demonstrated in Figure 7 with up to 86% of such RIS samples

overall. These samples, termed singular, harm the performance in two ways: 1) they do

not contribute to the influence computation of other seed sets than the ones that contain

the sources, however, the contribution is known in advance, i.e. number of seed nodes; 2)
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these samples magnify the variance of the RIS-based random variables used in estimation

causing high errors.

This motivates our Importance Sketching techniques to generate only non-singular

samples (containing more nodes than just the source) that are useful for influence estima-

tions of many seed sets (not just ones with the sources).

2.3.4 Importance Sketching

This section introduces our core construction of Importance Sketching algorithm to

generate random non-singular samples with probabilities proportional to those in the orig-

inal sample space of reverse influence samples and normalized by the probability of gener-

ating a non-singular one.

Algorithm 7: Importance Influence Sampling (ROIS) Alg.
Input: Graph G = (V,E,w)
Output: Rj - A random ROIS sample
Pick a node v ∈ V as the source with probability in Eq. 2.82;
Select an in-neighbor ui of v, ui ∈ N in(v), with probability of selecting ui given in

Eq. 2.83;
Initialize a queue Q = {ui} and Rj = {v, ui};
foreach ut ∈ N in(v), t > i do

With probability w(ut, v):
Q.push(ut);Rj ← Rj ∪ {ut};

end
while Q is not empty do

v = Q.pop()
foreach u ∈ N in(v)\Rj do

With probability w(u, v):
Q.push(u);Rj ← Rj ∪ {u};

end
end
return Rj ;
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2.3.4.1 Importance Influence Sampling (ROIS)

Sample Spaces and Desired Property. Let ΩRIS be the sampling space of reverse in-

fluence samples (RIS) with probability Pr[Rj ∈ ΩRIS] of generating sample Rj . Let ΩSKIS

be a subspace of ΩRIS and corresponds to the space of only non-singular reverse influence

samples in ΩRIS. Since ΩSKIS is a subspace of ΩRIS, the probability Pr[Rj ∈ ΩSKIS] of

generating a non-singular sample from ΩSKIS is larger than that from ΩRIS. Specifically, for

a node v ∈ V , let γv be the probability of generating a non-singular sample if v is selected

as the source and Γ =
∑

v∈V γv. Then, since the sample sources are selected randomly, the

ratio of generating a non-singular sample to generating any sample in ΩRIS is Γ
n

and thus,

the probability Pr[Rj ∈ ΩSKIS] is as follows,

Pr[Rj ∈ ΩSKIS] =
n

Γ
Pr[Rj ∈ ΩRIS]. (2.80)

Our upcoming ROIS algorithm aims to achieve this desired property of sampling non-

singular samples from ΩSKIS.

Sampling Algorithm. Our Importance Influence Sampling (ROIS) scheme involves

three core components:

1) Probability of having a non-singular sample. For a node v ∈ V , a sample with

source v is singular if no in-neighbor of v is selected, that happens with probability

Πu∈N in(v)(1−w(u, v)). Hence, the probability of having a non-singular sample from

a node v is the complement:

γv = 1− Πu∈N in(v) (1− w(u, v)) . (2.81)

2) Source Sampling Rate. Note that the set of non-singular samples is just a subset

of all possible samples and we want to generate uniformly random samples from

that subset. Moreover, each node v has a probability γv of generating a non-singular
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sample from it. Thus, in order to generate a random sample, we select v as the source

with probability Pr[src(Rj) = v] computed as follows,

Pr[src(Rj) = v] =
γv∑
u∈V γu

=
γv
Γ
, (2.82)

where Γ =
∑

u∈V γu, and then generate a uniformly random non-singular sample

from the specific source v as described in the next component.

3) Sample a non-singular sample from a source. From the src(Rj) = v, we generate a

non-singular sample Rj from v uniformly at random. Let N in(v) = {u1, u2, . . . , ul}

be a fixed-order set of in-neighbors of v. We divide the all possible non-singular

samples from v into l buckets: bucket Bi, 1 ≤ i ≤ l contains those samples that have

the first node from N in(v) being ui. That means all the nodes u1, . . . , ui−1 are not in

the sample but ui is in for certain. The other nodes from ui+1 to ul may appear and

will be sampled following the normal RIS sampling. Now we select the bucket that

Rj belongs to with the probability of selecting Bi being as follows,

Pr[select Bi] =
w(ui, v)

∏i−1
t=1 (1− w(ut, v))

γv
. (2.83)

For i = 1, we have Pr[select B1] = w(u1, v). Note that
∑l

i=1 Pr[select Bi] = 1. As-

sume bucket Bi is selected and, thus, node ui is added as the second node besides the

source into Rj . For each other node ut, t 6= i, ut is selected into Rj with probability

w(ut, v) following the ordinary RIS for the IC model.

These three components guarantee a non-singular sample. The detailed description

of ROIS sampling is in Alg. 7. The first step selects the source of the ROIS sample

among V . Then, the first incoming node to the source v is picked (Line 2) following the

above description of the component 3). Each of the other incoming neighbors also tries

to influence the source (Lines 4-6). The rest performs similarly as in RIS [11]. That is
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for each newly selected node, its incoming neighbors are randomly added into the sample

with probabilities equal to their edge weights. It continues until no newly selected node is

observed. Note that Line 3 only adds the selected neighbors ui of v into Q but adds both v

and ui to Rj . The loop from Lines 7-11 mimics the BFS-like sampling procedure of RIS.

Let Pr[Rj] be the probability of generating a non-singular sample Rj using ROIS

algorithm. We have

Pr[Rj] =
∑
v∈V

Pr[src(Rj) = v] Pr[generate Rj from v]

=
∑
v∈V

γv
Γ

Pr[Rj ∈ ΩRIS and src(Rj) = v]

γv

=
n

Γ

∑
v∈V

1

n
Pr[Rj ∈ ΩRIS and src(Rj) = v]

=
n

Γ
Pr[Rj ∈ ΩRIS] = Pr[Rj ∈ ΩSKIS],

where Pr[generate Rj from v] =
Pr[Rj∈ΩRIS and src(Rj)=v]

γv
due to the selection of the bucket

that Rj belongs to in ROIS. Thus, the output Rj of ROIS is an random sample from non-

singular space ΩSKIS and we obtain the following lemma.

Lemma 8. Recall that ΩSKIS is the sample space of non-singular reverse influence samples.

ROIS algorithm generates a random non-singular sample from sample space ΩSKIS.

Connection between IIS Samples and Influences. We establish the following key

lemma that connects our ROIS samples with the influence of any seed set S.

Lemma 9. Given a random ROIS sample Rj generated by Alg. 7 from the graph G =

(V,E,w), for any set S ⊆ V , we have,

I(S) = Pr[Rj ∩ S 6= ∅] · Γ +
∑
v∈S

(1− γv), (2.84)

where γv and Γ are defined in Eqs. 2.81 and 2.82.
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The proof is presented in our extended version [extended]. The influence I(S) of

any set S comprises of two parts: 1) Pr[Rj ∩ S 6= ∅] · Γ depends on the randomness of

Rj and 2) the fixed amount
∑

v∈S(1 − γv) that is inherent to set S and accounts for the

contribution of singular samples in ΩRIS to the influence I(S). Lemma 9 states that instead

of computing or estimating the influence I(S) directly, we can equivalently compute or

estimate Pr[Rj ∩ S 6= ∅] · Γ +
∑

v∈S(1− γv) using ROIS samples.

Remark: Notice that we can further generate samples of larger sizes and reduce the

variance as shown later, however, the computation would increase significantly.

2.3.5 Influence Oracle via IIS Sketch (SKIS)

We use ROIS sampling to generate a sketch for answering influence estimation queries

of different node sets. We show that the random variables associated with our samples have

much smaller variances than that of RIS, and hence, lead to better concentration or faster

estimation with much fewer samples required to achieve the same or better quality.

SKIS-based Influence Oracle. An SKIS sketch R is a collection of ROIS samples

generated by Alg. 7, i.e. R = {R1, . . . , RT}. As shown in Lemma 9, the influence I(S)

can be estimated through estimating the probability Pr[Rj ∩ S 6= ∅]. Thus, from a SKIS

sketchR = {R1, . . . , RT}, we can obtain an estimate Î(S) of I(S) for any set S by,

ÎR(S) =
CovR(S)

|R|
· Γ +

∑
v∈S

(1− γv) , (2.85)

where CovR(S) is coverage of S onR, i.e.,

CovR(S) = |{Rj ∈ R|Rj ∩ S 6= ∅}|. (2.86)

We build an SKIS-based oracle for influence queries by generating a setR of T ROIS

samples in a preprocessing step and then answer influence estimation query ÎR(S) for any

requested set S (Alg. 8). In the following, we show the better estimation quality of our
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Algorithm 8: SKIS-based Influence Oracle
Input: Graph G = (V,E,w)
Preprocessing: Generate a SKIS sketchR = {R1, . . . , RT } of ROIS samples using

Alg. 7.
For any influence query for any set S: return ÎR(S) (Eq. 4.34).

sketch through analyzing the variances and estimating concentration properties.

SKIS Random Variables for Estimations. For a random ROIS sample Rj and a set

S, we define random variables:

Xj(S) =


1 if Rj ∩ S 6= ∅

0 otherwise.
, and (2.87)

Zj(S) =
Xj(S) · Γ +

∑
v∈S(1− γv)

n
. (2.88)

Then, the means of Xj(S) and Zj(S) are as follows,

E [Xj(S)] = Pr[Rj ∩ S 6= ∅] =
I(S)−

∑
v∈S(1− γv)
Γ

(2.89)

E [Zj(S)] = E [Xj(S)] · Γ

n
+

∑
v∈S(1− γv)

n
=

I(S)

n
. (2.90)

Hence, we can construct a corresponding set of random variablesZ1(S), Z2(S), . . . , ZT (S)

by Eqs. 2.87 and 2.88. Then, ÎR(S) = n
T

∑T
j=1 Zj(S) is an empirical estimate of I(S) based

on the SKIS sketchR.

For comparison purposes, let Yj(S) be the random variable associated with RIS sam-

ple Qj in a RIS sketch Q,

Yj(S) =


1 if Qj ∩ S 6= ∅

0 otherwise.
(2.91)
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From Lemma 7, the mean value of Yj(S) is then,

E [Yj(S)] =
I(S)

n
. (2.92)

Variance Reduction Analysis. We show that the variance of Zj(S) for SKIS is

much smaller than that of Yj(S) for RIS. The variance of Zj(S) is stated in the following.

Lemma 10. The random variable Zj(S) (Eq. 2.88) has

Var[Zj(S)] =
I(S)

n

Γ

n
− I2(S)

n2

−
∑

v∈S(1− γv)
n2

(Γ +
∑
v∈S

(1− γv)− 2I(S)). (2.93)

Since the random variables Yj(S) for RIS samples are Bernoulli and E [Yj(S)] = I(S)
n

,

we have Var[Yj(S)] = I(S)
n

(1 − I(S)
n

). Compared with Var[Zj(S)], we observe that since

Γ
n
≤ 1, I(S)

n
Γ
n
− I2(S)

n2 ≤ I(S)
n
− I2(S)

n2 = Var[Yj(S)],

Var[Zj(S)] ≤ Var[Yj(S)]

−
∑

v∈S(1− γv)
n2

(Γ +
∑
v∈S

(1− γv)− 2I(S)).

In practice, most of seed sets have small influences, i.e. I(S)� Γ
2
, thus, Γ+

∑
v∈S(1−

γv)− 2I(S)� 0. Hence, Var[Zj(S)] < Var[Yj(S)] holds for most seed sets S.

Better Concentrations of SKIS Random Variables. Observe thatZj(S) ∈
[∑

v∈S(1−γv)

n
,

Γ+
∑
v∈S(1−γv)

n

]
,

we obtain another result on the variance of Zj(S) as follows.

Lemma 11. The variance of random variable Zj(S) satisfies

Var[Zj(S)] ≤ I(S)

n

Γ

n
. (2.94)

Using the above result with the general form of Chernoff’s bound of Lemma 2 in

[105], we derive the following concentration inequalities for random variables Zj(S) of

SKIS samples.
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Lemma 12. Given a SKIS sketchR = {R1, . . . , RT}with random variablesZ1(S), . . . , ZT (S),

we have,

Pr
[∑T

j=1 Zj(S)

T
n− I(S) ≥ εI(S)

]
≤ exp

( −ε2T
2Γ
n

+ 2
3
ε

I(S)

n

)
Pr
[∑T

j=1 Zj(S)

T
n− I(S) ≤ −εI(S)

]
≤ exp

(−ε2T
2Γ
n

I(S)

n

)
.

Compared with the bounds for RIS sketch in Corollaries 1 and 2 in [105], the above

concentration bounds for SKIS sketch (Lemma 12) are stronger, i.e. tighter. Specifically,

we have the factor Γ
n

(note that Γ
n
� 1 in most practical scenarios) in the denominator of

the exp(.) function while for RIS random variables, it is simply 1.

Sufficient Size of SKIS Sketch for High-quality Estimations. There are multi-

ple strategies to determine the number of ROIS samples generated in the preprocess-

ing step. For example, [92] generates samples until total size of all samples reaches

O( 1
ε3

(n + m) log(n)). Generating ROIS samples to reach such a specified threshold is

vastly faster than using RIS due to the bigger size of ROIS samples. This method provides

an additive estimation error guarantee within ε. Alternatively, by Lemma 12, we derive

the sufficient number of ROIS samples to provide the more preferable (ε, δ)-estimation of

I(S).

Lemma 13. Given a set S, ε, δ ≥ 0, if the SKIS sketchR has at least (2Γ
n

+ 2
3
ε) ln(2

δ
) n
I(S)

ε−2

ROIS samples, ÎR(S) is an (ε, δ)-estimate of I(S), i.e.,

Pr[(1− ε)I(S) ≤ ÎR(S) ≤ (1 + ε)I(S)] ≥ 1− δ. (2.95)

In practice, I(S) is unknown in advance and a lower-bound of I(S), e.g. |S|, can be

used to compute the necessary number of samples to provide the same guarantee. Com-

pared to RIS with weaker concentration bounds, we save a significant factor of O(Γ
n
).
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2.3.6 SKIS-based IM Algorithms

With the help of SKIS sketch that is better in estimating the influences compared to

the well-known successful RIS, we can largely improve the efficiency of IM algorithms in

the broad class of RIS-based methods, i.e. RIS [11], TIM/TIM+ [106], IMM [105], BCT

[80, 85], SSA/DSSA [84]. This improvement is possible since these methods heavily rely

on the concentration of influence estimations provided by RIS samples.

SKIS-based framework. LetR = {R1, R2, . . . } be a SKIS sketch of ROIS samples.

R gives an influence estimate

ÎR(S) =
CovR(S)

|R|
· Γ +

∑
v∈S

(1− γv), (2.96)

for any set S. Thus, instead of optimizing over the exact influence, we can intuitively find

the set S to maximize the estimation function Î(S). Then, the framework of using SKIS

sketch to solve IM problem contains two main steps:

1) Generate a SKIS sketchR of ROIS samples,

2) Find the set Sk that maximizes the function ÎR(S) and returning Sk as the solution

for the IM instance.

There are two essential questions related to the above SKIS-based framework : 1) Given

a SKIS sketch R of ROIS samples, how to find Sk of k nodes that maximizes ÎR(Sk) (in

Step 2)? 2) How many ROIS samples in the SKIS sketch R (in Step 1) are sufficient to

guarantee a high-quality solution for IM?

We give the answers for the above questions in the following sections. Firstly, we

adapt the gold-standard greedy algorithm to obtain an (1− (1− 1/k)k)-approximate solu-

tion over a given SKIS sketch. Secondly, we adopt recent techniques on RIS with strong

solution guarantees to SKIS sketch to find an overall satisfactory solution.

79



www.manaraa.com

Algorithm 9: Greedy Algorithm on SKIS sketch
Input: SKIS sketchR and k
Output: An (1− (1− 1/k)k)-approximate seed set Ŝk
Ŝk = ∅
for i = 1 : k do

v̂ ← arg maxv∈V \Ŝk

(CovR(S∪{v})−CovR(S)
|R| Γ + (1− γv)

)
Add v̂ to Ŝk

end
return Ŝk

2.3.6.1 Greedy Algorithm on SKIS Sketches

Let consider the optimization problem of finding a set Sk of at most k nodes to maxi-

mize the function ÎR(S) on a SKIS sketch R of ROIS samples under the cardinality con-

straint |S| ≤ k. The function ÎR(S) is monotone and submodular since it is the weighted

sum of a set coverage function CovR(S) and a linear term
∑

v∈S(1− γv). Thus, we obtain

the following lemma with the detailed proof in the appendix.

Lemma 14. Given a set of ROIS samples R, the set function ÎR(S) defined in Eq. 2.96 is

monotone and submodular.

Thus, a standard greedy scheme [81], which iteratively selects a node with highest

marginal gain, gives an (1− (1− 1
k
)k), that converges to (1− 1/e) asymptotically, approx-

imate solution Ŝk. The marginal gain of a node v with respect to a set S on SKIS sketchR

is defined as follows,

gainR(v, S) = ∆R(v, Ŝk)Γ/|R|+ (1− γv), (2.97)

where ∆R(v, S) = CovR(S ∪ {v}) − CovR(S) is called the marginal coverage gain of v

w.r.t. S on SKIS sketchR.

Given a collection of ROIS samples R and a budget k, the Greedy algorithm is pre-

sented in Alg. 11 with a main loop (Lines 2-4) of k iterations. Each iteration picks a node
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v̂ having largest marginal gain (Eq. 2.97) with respect to the current partial solution Ŝk and

adds it to Ŝk. The approximation guarantee of the Greedy algorithm (Alg. 11) is stated

below.

Lemma 15. The Greedy algorithm (Alg. 11) returns an (1−(1− 1
k
)k)-approximate solution

Ŝk,

ÎR(Ŝk) ≥ (1− (1− 1/k)k)ÎR(S∗R), (2.98)

where S∗R is the optimal cover set of size k on sketchR.

The lemma is derived directly from the 1 − (1 − 1
k
)k approximation factor of the

ordinary greedy algorithm [81].

2.3.6.2 Sufficient Size of SKIS Sketch for IM

Since the SKIS sketch offers a similar greedy algorithm with approximation ratio (1−

(1− 1/k)k) to the traditional RIS, we can combine SKIS sketch with any RIS-based algo-

rithm, e.g. RIS[11], TIM/TIM+[106], IMM[105], BCT[85], SSA/DSSA[84]. We discuss

the adoptions of two most recent and scalable algorithms IMM[105] and SSA/DSSA[84].

IMM+SKIS. Tang et al. [105] provide a theoretical threshold

θRIS = O
(

(log

(
n

k

)
+ log δ−1)

n

OPTk
ε−2
)

(2.99)

on the number of RIS samples to guarantee an (1− 1/e− ε)-approximate solution for IM

problem with probability 1− δ.

Replacing RIS with ROIS samples to build a SKIS sketch enables us to use the better

bounds in Lemma 12. Following [105], we reduce the threshold of ROIS samples to,

θSKIS = O
(Γ + k

n
θRIS

)
. (2.100)
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Combine with Lemma 15, we obtain the following theorem.

Theorem 6. With θSKIS random ROIS samples (Eq.2.100) in the SKIS sketch R, the

Greedy (Alg. 11) returns an (1 − 1/e − ε)-approximate solution with probability at least

1− δ.

SSA/D-SSA+SKIS. More recently, Nguyen et al. [84] propose SSA and D-SSA

algorithms which implement the Stop-and-Stare strategy of alternating between finding

candidate solutions and checking the quality of those candidates at exponential points, i.e.

2t, t ≥ 1, to detect a satisfactory solution at the earliest time.

Combining SKIS with SSA or D-SSA brings about multiple benefits in the checking

step of SSA/D-SSA. The benefits stem from the better concentration bounds which lead to

better error estimations and smaller thresholds to terminate the algorithms. We give more

details in the following.

Recall that the original Stop-and-Stare strategy in [84] uses two independent sets of

RIS samples, calledR andRc. The greedy algorithm is applied on the first setR to find a

candidate set Ŝk along with an estimate ÎR(Ŝk) and the second setRc is used to reestimate

the influence of Ŝk by ÎRc(Ŝk). Now, SSA and D-SSA have different ways to check the

solution quality.

SSA. It assumes a set of fixed precision parameters ε1, ε2, ε3 such that ε1+ε2+ε1ε2+ε3
(1+ε1)(1+ε2)

(1−

1/e) ≤ ε. The algorithm stops when two conditions are met:

1) CovR(Ŝk) ≥ Λ1 where Λ1 = O(log δ
tmax

ε−2
3 ) and tmax is a precomputed number

depending on the size of the input graph G.

2) ÎR(Ŝk) ≤ (1 + ε1)ÎRc(Ŝk).

⇒ Improvements using SKIS: Replacing RIS samples by ROIS samples to build R

andRc helps in both stopping conditions:
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• Reduce Λ1 to Λ1 = O(Γ
n

log δ
tmax

ε−2
3 ) using the tighter form of the Chernoff’s bounds

in Lemma 12.

• Since ROIS samples have better influence estimation accuracy, ÎR(Ŝk) and ÎRc(Ŝk)

are closer to the true influence I(Ŝk). Thus, the second condition is met earlier than

using RIS samples.

D-SSA. Instead of assuming precision parameters, D-SSA dynamically compute the

error bounds ε1, ε2 and ε3 as follows:

• ε1 = ÎR(Ŝk)

ÎRc (Ŝk)
− 1.

• ε2 = ε
√

n(1+ε)

2t−1 ÎRc (Ŝk)
.

• ε3 = ε
√

n(1+ε)(1−1/e−ε)
(1+ε/3)2t−1 ÎRc (Ŝk)

.

Here, ε1 measures the discrepancy of estimations using two different sketches R and Rc

while ε2 and ε3 are the error bounds of estimating the influences of Ŝk and the optimal

solution S∗k using the number of samples contained in R and Rc. The algorithm stops

when two conditions are met:

• CovR(Ŝk) ≥ Λ2 where Λ2 = O(log δ
tmax

ε−2).

• (ε1 + ε2 + ε1ε2)(1− 1/e− ε) + (1− 1/e)ε3 ≤ ε.

⇒ Improvement using SKIS: Similarly to SSA, applying SKIS helps in both stopping

conditions:

• Reduce Λ2 to Λ2 = O(Γ
n

log δ
tmax

ε−2).

• Reduce the value of ε1, ε2 and ε3 due to better influence estimations of ÎR(Ŝk) and

ÎRc(Ŝk) by SKIS that leads to earlier satisfaction of the second condition.
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2.3.7 Extensions to other diffusion models

The key step in extending our techniques for other diffusion models is devising an im-

portance sketching procedure for each model. Fortunately, following the same designing

principle as ROIS, we can devise importance sketching procedures for many other diffu-

sion models. We demonstrate this ability through introducing the importance sketching

algorithm for two other equally important and widely adopted diffusion models, i.e. Linear

Threshold [55] and Continuous-time model [32].

The Linear Threshold model (LT) [55]. This model imposes a constraint that the

total weights of incoming edges into any node v ∈ V is at most 1, i.e.
∑

u∈N in(v) w(u, v) ≤

1,∀v ∈ V . Every node has a random activation threshold λv ∈ [0, 1] and gets activated if

the total edge weights from active in-neighbors exceeds λv, i.e.
∑

u∈N in(v),u is active w(u, v) ≥

λv. A RIS sampling for LT model [85] selects a random node as the source (initially acti-

vated) and iteratively picks at most one in-neighbor of the last activated node with proba-

bility being the edge weights, w(u, v). It also stops when no more nodes are activated. The

resulted random RIS sample consists of all the activated nodes along the way.

Similarly to ROIS, the importance sketching algorithm for the LT model has the fol-

lowing components:

• Probability of having a non-singular sample:

γv =
∑

u∈N in(v)

w(u, v) (2.101)

• Source Sampling Rate:

Pr[src(Rj) = v] =
γv∑
v∈V γv

(2.102)

• Sample a non-singular sample from a source.: select exactly one in-neighbor u of

src(Rj) = v with probability w(u,v)
γv

. The rest follows RIS sampling [85].
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The Continuous-time diffusion model [32]. This recently emerged model exhibits

in principle a similar importance sketching procedure. Here we have a deadline parameter

T of the latest activation time and each edge (u, v) is associated with a length distribution,

represented by a density function L(u,v)(t), of how long it takes u to influence v. A node u

is influenced if the length of the shortest path from any active node at time 0 is at most T .

The RIS sampling for the Continuous-time model [105] picks a random node as the source

and invokes the Dijkstra’s algorithm to select nodes into src(Rj). When the edge (u, v) is

first visited, the activation time is sampled following its length distribution L(u,v)(t). The

procedure stops when the shortest path length of the considering node exceeds the deadline

T . Due to the property of Dijkstra’s algorithm, at the stopping point, all the nodes with

shortest path lengths less than T are visited. From the length distribution, we can compute

the probability p(u, v, T ) of an edge (u, v) having activation time at most T as follows:

p(u, v, T ) =

∫ T

t=0

L(u,v)(t)dt (2.103)

The importance sketching procedure for the Continuous-time model has the following

components:

• Probability of having a non-singular sample:

γv = 1−
∏

u∈N in(v)

(1− p(u, v, T )) (2.104)

• Source Sampling Rate:

Pr[src(Rj) = v] =
γv∑
v∈V γv

(2.105)

• Sample a non-singular sample from a source.: Use a bucket system on p(u, v, T )

similarly to ROIS to select the first in-neighbor u. The activation time of u follows

the normalized density function L(u,v)(t)
γv

. Subsequently, it continues by following RIS
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sampling in [105].

2.3.8 Experiments

We demonstrate the advantages of our SKIS sketch through a comprehensive set of ex-

periments on the key influence estimation and maximization problems. Due to space limit,

we report the results under the IC model and partial results for the LT model. However, the

implementations are released on our website to produce complete results.

2.3.8.1 Experimental Settings

Table 8.: Datasets’ Statistics

Dataset #Nodes #Edges Avg. Degree

NetPHY 37 · 103 181 · 103 9.8
Epinions 75 · 103 841 · 103 22.4
DBLP 655 · 103 2 · 106 6.1
Orkut 3 · 106 234 · 106 78.0
Twitter [65] 41.7 · 106 1.5 · 109 70.5
Friendster 65.6 · 106 3.6 · 109 109.6

Datasets. We use 6 real-world datasets from [103, 65] with size ranging from tens of

thousands to as large as 65.6 million nodes and 3.6 billion edges. Table 18 gives a statistical

summary of the testing datasets.

Algorithms compared. On influence estimation, we compare our SKIS sketch with:

• RIS [11]: The well-known RIS sketch.

• SKIM [25]: Combined reachability sketch. We run SKIM with default parameters in

[25] (k = l = 64).

Following [92], we generate samples into SKIS and RIS until the total size of all the

samples reaches h · n log n where h is a constant. Here, h is chosen in the set {5, 10}.
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On influence maximization, we compare:

• PMC [93]: A Monte-Carlo simulation pruned method with no guarantees. It only

works on the IC model.

• IMM [105]: RIS-based algorithm with quality guarantees.

• D-SSA [84]: The current fastest RIS-based algorithm with strong approximation

guarantee.

• D-SSA+SKIS: A modified version of D-SSA where SKIS sketch is adopted to re-

place RIS.

We set ε = 0.5, δ = 1/n for the last three algorithms. For PMC, we use the default

parameter of 200 DAGs.

We compare the algorithms in terms of the solution quality, running time and memory

usage. For quality assessment, we use the following metric.

Estimation Error. To assess the estimation quality w.r.t. a seed set S, we adopt the

relative difference which is defined as |̂I(S)−I(S)|
max{I(S),̂I(S)} · 100%, where Î(S) is an estimate, and

I(S) is the “ground-truth” influence of S.
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Fig. 8.: Relative difference on Epinions under a) TRI model and b), c), d) WC model with |S| = 1.
SKIS are the closest to the ‘ground truth’ among the three sketches.

Ground-truth Influence. Unlike previous studies [105, 25, 93] using a constant

number of cascade simulations, i.e. 10000, to measure the ground-truth influence with
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Fig. 9.: Efficiency of SKIS and RIS sketches in finding the maximum seed sets. SKIS sketch is up
to 80% more efficient.

unknown accuracy, we adopt the Monte-Carlo Stopping-Rule algorithm [26] that guaran-

tees an estimation error less than ε with probability at least 1 − δ where ε = 0.005, δ =

1/n. Specifically, let Wj be the size of a random influence cascade and Zj =
Wj

n
with

E [Zj] = I(S)/n and 0 ≤ Zj ≤ 1. Monte-Carlo method generates sample Zj until∑T
j=1 Zj ≥ 4(e − 2) ln(2

δ
) 1
ε2

and returns Î(S) =
∑T

j=1 Zjn/T as the ground-truth in-

fluence.

For Twitter and Friendster dataset, we set ε = 0.05, and δ = 1/n to compute ground-

truth due to the huge computational cost in these networks. For the other networks, we

keep the default setting of ε and δ as specified above.

Weight Settings. We consider two widely-used models:

• Weighted Cascade (WC) [106, 25, 105, 84]: The weight of edge (u, v) is inversely

proportional to the in-degree of node v, din(v), i.e. w(u, v) = 1
din(v)

.

• Trivalency (TRI) [25, 19, 52]: The weight w(u, v) is selected randomly from the set

{0.1, 0.01, 0.001}.

Environment. We implemented our algorithms in C++ and obtained the implementa-

tions of others from the corresponding authors. We conducted all experiments on a CentOS

machine with Intel Xeon E5-2650 v3 2.30GHz CPUs and 256GB RAM. We compute the

ground-truth for our experiments in a period of 2 months on a cluster of 16 CentOS ma-

88



www.manaraa.com

Table 9.: Average relative differences (dnf: “did not finish” within 24h). SKIS almost

always returns the lowest errors.

WC Model TRI Model

SKIS RIS SKIM SKIS RIS SKIM

|S| Nets h(5)h(10) h(5)h(10) k(64) h(5)h(10) h(5)h(10) k(64)

l

PHY 6.2 3.7 14.0 7.8 7.5 1.7 1.3 11.8 8.2 4.5
Epin. 4.7 3.0 15.7 11.8 19.6 16.6 14.2 55.3 47.4 27.7
DBLP 3.8 4.1 13.7 11.6 5.0 0.9 0.7 9.4 6.4 3.5
Orkut 10.3 9.2 13.5 8.8 77.6 9.3 9.9 14.5 10.8 dnf
Twit. 10.9 10.5 21.4 16.0 29.1 81.4 81.9 80.8 81.5 dnf
Frien. 15.9 10.2 22.2 13.3 dnf 29.8 21.3 28.5 23.6 dnf

102

PHY 0.9 0.6 1.0 0.7 2.1 0.3 0.2 1.1 0.9 1.8
Epin. 1.0 0.7 1.0 1.0 7.6 0.2 1.5 4.4 1.8 2.8
DBLP 0.9 0.6 1.9 1.4 5.0 0.8 0.7 5.5 5.3 5.5
Orkut 0.9 0.6 1.1 0.7 56.5 0.1 0.2 4.2 0.9 dnf
Twit. 1.1 1.2 1.3 1.1 60.2 4.3 3.1 6.4 5.5 dnf
Frien. 0.9 0.7 0.9 0.7 dnf 1.9 1.9 0.6 2.0 dnf

103

PHY 0.6 0.8 0.9 1.0 0.6 0.3 0.4 1.2 1.3 1.1
Epin. 0.6 0.6 0.6 0.7 2.3 2.3 0.3 1.9 4.6 1.5
DBLP 0.2 0.3 0.2 0.2 1.7 0.1 0.0 0.3 0.2 0.3
Orkut 0.3 0.3 0.3 0.3 50.7 2.5 1.1 6.8 2.1 dnf
Twit. 0.9 0.9 1.0 0.9 36.3 0.9 2.4 4.1 2.8 dnf
Frien. 0.3 0.3 0.3 0.2 dnf 1.9 1.9 0.6 2.0 dnf

chines, each with 64 Intel Xeon CPUs X5650 2.67GHz and 256GB RAM.

2.3.8.2 Influence Estimation

We show that SKIS sketch consumes much less time and memory space while consis-

tently obtaining better solution quality, i.e. very small errors, than both RIS and SKIM.

Solution Quality: Table 9 and Figure 8 present the relative estimation errors of all

three sketches.

The solution quality of SKIS is consistently better than RIS and SKIM across all

the networks and edge models. As shown in Table 9, the errors of SKIS are 110% and
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Table 10.: Performance of IM algorithms with k = 100 (dnf: “did not finish” within 6h, mem:
“out of memory”).

Running Time [s (or h)] Total Memory [M (or G)] Expected Influence (%) #Samples [×103]

Nets IMM PMC D-SSA D-SSA IMM PMC D-SSA D-SSA IMM PMC D-SSA D-SSA IMM D-SSA D-SSA
+SKIS +SKIS +SKIS +SKIS

WC

PHY 0.1 3.1 0.0 0.0 31 86 26 9 6.64 6.7 5.33 5.34 103.3 8.9 3.8
Epin. 0.2 10.5 0.0 0.0 39 130 34 17 19.4 19.8 17.9 16.6 39.8 4.48 0.9
DBLP 1.1 137.4 0.1 0.1 162 60 136 113 10.8 11.2 9.3 8.5 93.0 5.4 2.6
Orkut 24.1 1.4h 2.6 0.9 4G 6G 2G 2G 6.7 8.7 5.7 5.1 174.4 11.52 2.6
Twit. 67.3 mem 5.5 6.3 30G mem 17G 16G 25.80 mem 24.1 21.0 54.0 18.0 0.8
Frien. dnf mem 78.3 43.6 dnf mem 35G 36G dnf mem 0.35 0.35 mem 215.0 102.4

TRI

PHY 0.2 1.5 0.0 0.0 50 61 30 9 1.77 1.73 1.4 1.5 370.1 35.8 3.8
Epin. 13.9 6.9 2.0 0.6 483 40 72 33 5.7 5.9 5.47 5.46 123.0 8.9 0.5
DBLP 3.2 20.1 0.3 0.2 389 54 191 118 0.32 0.31 0.28 0.24 3171.0 348.2 20.5
Orkut dnf 0.3h 1.3h 0.2h dnf 16G 28G 11G dnf 67.3 67.9 67.8 dnf 1.4 0.3
Twit. dnf mem 5.2h 0.6h dnf mem 100G 28G dnf mem 24.2 24.4 dnf 3.4 0.4
Frien. dnf mem mem 3.1h dnf mem mem 99G dnf mem mem 40.1 dnf mem 0.2

400% smaller than those of RIS with k = 1 while being as good as or better than RIS for

k = 100, 1000. On the other hand, SKIM shows the largest estimation errors in most of

the cases. Particularly, SKIM’s error is more than 60 times higher than SKIS and RIS on

Twitter when |S| = 100. Similar results are observed under TRI model. Exceptionally,

on Twitter and Friendster, the relative difference of RIS is slightly smaller than SKIS with

h = 5 but larger on h = 10. In TRI model, estimating a random seed on large network as

Twitter produces higher errors since we have insufficient number of samples.

Figures 8b, c, and d draw the error distributions of sketches for estimating the influ-

ences of random seeds. Here, we generate 1000 uniformly random nodes and consider

each node to be a seed set. We observe that SKIS’s errors are highly concentrated around

0% even when the influences are small while errors of RIS and SKIM spread out widely.

RIS reveals extremely high errors for small influence estimation, e.g. up to 80%. The error

distribution of SKIM is the most widely behaved, i.e. having high errors at every influence

level. Under TRI model (Figure 8a), SKIS also consistently provides significantly smaller

estimation errors than RIS and SKIM.

Performance: We report indexing time and memory of different sketches in Table 11.
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Table 11.: Sketch construction time and index memory of algorithms on different edge

models. SKIS and RIS uses roughly the same time and memory and less than those of

SKIM.

Index Time Index Memory
[second (or h for hour)] [MB (or G for GB)]

SKIS RIS SKIM SKIS RIS SKIM

Nets h(5)h(10)h(5)h(10) k(64) h(5)h(10)h(5)h(10) k(64)

WC

PHY 0 1 1 1 2 41 83 52 105 105
Epin. 1 1 1 1 10 63 126 81 162 220
DBLP 10 18 7 14 37 702 1G 848 2G 2G
Orkut 92 157 69 148 0.6h 2G 5G 3G 5G 9G
Twit. 0.6h 0.9h 0.4h 1.0h 5.2h 38G 76G 42G 84G 44G
Frien. 0.8h 1.8h 0.8h 1.9h dnf 59G 117G 61G 117G dnf

TRI

PHY 0 1 1 2 1 46 90 97 194 99
Epin. 1 1 1 1 29 41 82 41 84 230
DBLP 11 34 18 36 22 1G 2G 2G 5G 2G
Orkut 88 206 89 197 dnf 2G 4G 2G 4G dnf
Twit. 0.6h 1.2h 0.5h 1.3h dnf 36G 69G 36G 69G dnf
Frien. 0.9h 2.3h 1.0h 2.4h dnf 54G 108G 54G 108G dnf

Indexing Time. SKIS and RIS use roughly the same amount of time for build the

sketches while SKIM is much slower than SKIS and RIS and failed to process large net-

works in both edge models. On larger networks, SKIS is slightly faster than RIS. SKIM

markedly spends up to 5 hours to build sketch for Twitter on WC model while SKIS, or

RIS spends only 1 hour or less on this network.

Index Memory. In terms of memory, the same observations are seen as with indexing

time essentially because larger sketches require more time to construct. In all the exper-

iments, SKIS consumes the same or less amount of memory with RIS. SKIM generally

uses more memory than SKIS and RIS.

In summary, SKIS consistently achieves better solution quality than both RIS and
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SKIM on all the networks, edge models and seed set sizes while consuming the same or

less time/memory. The errors of SKIS is highly concentrated around 0. In contrast, RIS is

only good for estimating high influence while incurring significant errors for small ranges.
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Fig. 10.: Running time of algorithms under the IC model.
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Fig. 11.: Running time of algorithms under the LT model.

2.3.8.3 Influence Maximization

This subsection illustrates the advantage of ROIS sketch in finding the seed set with

maximum influence. The results show that ROIS samples drastically speed up the compu-

tation time. D-SSA+SKIS is the first to handle billion-scale networks on the challenging
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TRI edge model. We limit the running time for algorithms to 6 hours and put “dnf” if they

cannot finish.

Identifiability of the Maximum Seed Sets: We compare the ability of the new ROIS

with the traditional RIS sampling in terms of identifying the seed set with maximum influ-

ence. We fix the number of samples generated to be in the set {1000, 10000, 100000} and

then apply the Greedy algorithm to find solutions. We recompute the influence of returned

seed sets using Monte-Carlo method with precision parameters ε = 0.005, δ = 1/n. The

results is presented in Figure 9.

From Figure 9, we observe a recurrent consistency that ROIS samples return a better

solution than RIS over all the networks, k values and number of samples. Particularly, the

solutions provided by ROIS achieve up to 80% better than those returned by RIS. When

more samples are used, the gap gets smaller.

Efficiency of SKIS on IM problem: Table 10 presents the results of D-SSA-SKIS,

D-SSA, IMM and PMC in terms of running time, memory consumption and samples gen-

erated.

Running Time. From Table 10, the combination D-SSA+SKIS outperforms the rest

by significant margins on all datasets and edge models. D-SSA-SKIS is up to 10x faster

than the original D-SSA. D-SSA+SKIS is the first and only algorithm that can run on the

largest network on TRI model.

Figure 10 compares the running time of all IM algorithms across a wide range of bud-

get k = 1..20000 under IC and TRI edge weight model. D-SSA+SKIS always maintains

significant performance gaps to the other algorithms, e.g. 10x faster than D-SSA or 1000x

faster than IMM and PMC.

Number of Samples and Memory Usage. On the same line with the running time,

the memory usage and number of samples generated by D-SSA+SKIS are much less than

those required by the other algorithms. The number of samples generated by D-SSA+SKIS
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is up to more 10x smaller than D-SSA on TRI model, 100x less than IMM. Since the

memory for storing the graph is counted into the total memory, the memory saved by D-

SSA+SKIS is only several times smaller than those of D-SSA and IMM. PMC exception-

ally requires huge memory and is unable to run on two large networks.

Experiments on the Linear Threshold (LT) model. We carry another set of experiments

on the LT model with multiple budget k. Since in LT, the total weights of incoming edge to

every node are bounded by 1, for each node, we first normalized the weights of incoming

edges and then multiply them with a random number uniformly generated in [0, 1].

The results are illustrated in Figure 11. Similar observations to the IC are seen in the

LT model that D-SSA+SKIS runs faster than the others by orders of magnitude.

Overall, D-SSA+SKIS reveals significant improvements over the state-of-the-art al-

gorithms on influence maximization. As a result, D-SSA+SKIS is the only algorithm that

can handle the largest networks under different models.

2.3.9 Conclusion

We propose SKIS - a novel sketching tools to approximate influence dynamics in the

networks. We provide both comprehensive theoretical and empirical analysis to demon-

strate the superiority in size-quality trade-off of SKIS in comparisons to the existing sketches.

The application of SKIS to existing algorithms on Influence Maximization leads to signif-

icant performance boost and easily scale to billion-scale networks. In future, we plan to

extend SKIS to other settings including evolving networks and time-based influence dy-

namics.
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2.3.10 Omitted Proofs of Lemmas and Theorems

2.3.10.1 Proof of Lemma 9

Given a stochastic graph G, recall that ΩG is the space of all possible sample graphs

g ∼ G and Pr[g] is the probability that g is realized from G. In a sample graph g ∈ ΩG ,

ηg(S, v) = 1 if v is reachable from S in g. Consider the graph sample space ΩG , based on a

node v ∈ V \S, we can divide ΩG into two partitions: 1) Ω∅G(v) contains those samples g in

which v has no incoming live-edges; and 2) Ω̄∅G(v) = ΩG\Ω∅G . We start from the definition

of influence spread as follows,

I(S) =
∑
v∈V

∑
g∈ΩG

ηg(S, v) Pr[g]

=
∑
v∈V

( ∑
g∈Ω∅G(v)

ηg(S, v) Pr[g] +
∑

g∈Ω̄∅G(v)

ηg(S, v) Pr[g]
)
.

In each g ∈ Ω∅G(v), the node v does not have any incoming nodes, thus, ηg(S, v) = 1

only if v ∈ S. Thus, we have that
∑

v∈V
∑

g∈Ω∅G(v) ηg(S, v) Pr[g] =
∑

v∈S
∑

g∈Ω∅G(v) Pr[g].

Furthermore, the probability of a sample graph which has no incoming live-edge to v is∑
g∈Ω∅G(v) Pr[g] = 1− γv. Combine with the above equiation of I(S), we obtain,

I(S) =
∑
v∈S

(1− γv) +
∑
v∈V

∑
g∈Ω̄∅G(v)

ηg(S, v) Pr[g ∈ ΩG]. (2.106)

Since our ROIS sketching algorithm only generates samples corresponding to sample

graphs from the set Ω̄∅G(v), we define Ω̄∅G(v) to be a graph sample space in which the sample

graph ḡ ∈ Ω̄∅G(v) has a probability Pr[ḡ ∈ Ω̄∅G(v)] = Pr[ḡ∈ΩG ]
γv

of being realized (since∑
ḡ∈Ω̄∅G(v) Pr[ḡ ∈ ΩG] = γv is the normalizing factor to fulfill a probability distribution of a
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sample space). Then, Eq. 2.106 is rewritten as follows,

I(S) =
∑
v∈V

∑
g∈Ω̄∅G(v)

ηg(S, v)
Pr[g ∈ ΩG]

γv
γv +

∑
v∈S

(1− γv)

=
∑
v∈V

∑
ḡ∈Ω̄∅G(v)

ηḡ(S, v) Pr[ḡ ∈ Ω̄∅G(v)]γv +
∑
v∈S

(1− γv)

Now, from the node v in a sample graph ḡ ∈ Ω̄∅G(v), we have a ROIS sketch Rj(ḡ, v)

starting from v and containing all the nodes that can reach v in ḡ. Thus, ηḡ(S, v) =

1Rj(ḡ,v)∩S 6=∅ where 1x is an indicator function returning 1 iff x 6= 0. Then,

∑
ḡ∈Ω̄∅G(v)

ηḡ(S, v) Pr[ḡ ∈ Ω̄∅G(v)]

=
∑

ḡ∈Ω̄∅G(v)

1Rj(ḡ,v)∩S 6=∅ Pr[ḡ ∈ Ω̄∅G(v)] = Pr[Rj(v) ∩ S 6= ∅]

where Rj(v) is a random ROIS sketch with src(Rj(v)) = v. Plugging this back into the

computation of I(S) gives,

I(S) =
∑
v∈V

Pr[Rj(v) ∩ S 6= ∅]γv +
∑
v∈S

(1− γv)

=
∑
v∈V

Pr[Rj(v) ∩ S 6= ∅]γv
Γ

Γ +
∑
v∈S

(1− γv)

=
∑
v∈V

Pr[Rj(v) ∩ S 6= ∅] Pr[src(Rj) = v]Γ +
∑
v∈S

(1− γv)

= Pr[Rj ∩ S 6= ∅] · Γ +
∑
v∈S

(1− γv) (2.107)

That completes the proof.
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2.3.10.2 Proof of Lemma 10

From the basic properties of variance, we have,

Var[Zj(S)] = Var[
Xj(S) · Γ +

∑
v∈S(1− γv)

n
]

=
Γ2

n2
Var[Xj(S)]

SinceXj(S) is a Bernoulli random variable with its mean value E [Xj(S)] =
I(S)−

∑
v∈S(1−γv)

Γ
,

the variance Var[Xj(S)] is computed as follows,

Var[Xj(S)]

=
I(S)−

∑
v∈S(1− γv)
Γ

(1−
I(S)−

∑
v∈S(1− γv)
Γ

)

=
I(S)

Γ
− I2(S)

Γ2
−
∑

v∈S(1− γv)
Γ2

(Γ +
∑
v∈S

(1− γv)− 2I(S))

Put this back into the variance of Zj(S) proves the lemma.

2.3.10.3 Proof of Lemma 11

Since Zj(S) takes values of either
∑
v∈S(1−γv)

n
or Γ+

∑
v∈S(1−γv)

n
and the mean value

E [Zj(S)] = I(S)
n

, i.e.
∑
v∈S(1−γv)

n
≤ I(S)

n
≤ Γ+

∑
v∈S(1−γv)

n
. The variance of Zj(S) is com-

puted as follows,

Var[Zj(S)]

=
(I(S)

n
−
∑

v∈S(1− γv)
n

)(Γ +
∑

v∈S(1− γv)
n

− I(S)

n

)
≤ I(S)

n

(Γ +
∑

v∈S(1− γv)
n

−
∑

v∈S(1− γv)
n

)
=

I(S)

n

Γ

n
(2.108)
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2.3.10.4 Proof of Lemma 12

Lemma 2 in [105] states that:

Lemma 16. Let M1,M2, . . . be a martingale, such that |M1| ≤ a, |Mj −Mj−1| ≤ a for

any j ∈ [2, T ], and

Var[M1] +
T∑
j=2

Var[Mj|M1,M2, . . . ,Mj−1] ≤ b, (2.109)

where Var[.] denotes the variances of a random variable. Then, for any λ > 0,

Pr[MT − E [MT ] ≥ λ] ≤ exp
(
− λ2

2
3
aλ+ 2b

)
(2.110)

Note that uniform random variables are also a special type of martingale and the above

lemma holds for random variable as well. Let p = I(S)
n

. For RIS samples, since

• |M1| ≤ 1,

• |Mj −Mj−1| ≤ 1,∀j ∈ [2, T ],

• Var[M1] +
∑T

j=2 Var[Mj|M1, . . . ,Mj−1] =
∑i

j=1 Var[Yj(S)] = Tp(1− p) ≤ Tp,

applying Eq. 2.110 for λ = εTp gives the following Chernoff’s bounds,

Pr
[ T∑
j=1

Xj(S)− Tp ≥ εTp
]
≤ exp

(
− ε2

2 + 2
3
ε
Tp
)
, (2.111)

and,

Pr
[ T∑
j=1

Xj(S)− Tp ≤ −εTp
]
≤ exp

(
− ε2

2
Tp
)
. (2.112)

However, for ROIS samples in SKIS sketch, the corresponding random variables

Zj(S) replace Yj(S) and have the following properties:

• |M1| ≤
Γ+

∑
v∈S(1−γv)

n
≤ 1,
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• |Mj −Mj−1| ≤ 1,∀j ∈ [2, T ],

• The sum of variances:

Var[M1] +
T∑
j=2

Var[Mj|M1, . . . ,Mj−1]

=
i∑

j=1

Var[Zj(S)] = Tp
Γ

n
(2.113)

Thus, applying the general bound in Eq. 2.110 gives,

Pr
[ T∑
j=1

Xj(S)− Tp ≥ εTp
]
≤ exp

(
− ε2

2Γ
n

+ 2
3
ε
Tp
)
, (2.114)

and,

Pr
[ T∑
j=1

Xj(S)− Tp ≤ −εTp
]
≤ exp

(
− ε2

2Γ
n

Tp
)
. (2.115)

Note the factor Γ
n

is added in the denominator of the terms in the exp(.) function.

Since 2Γ
n

dominates 2
3
ε, the concentration bounds for Zj(S) for SKIS are tighter than those

of Yj(S) for RIS given in Eqs. 2.111 and 2.112.

2.3.10.5 Proof of Lemma 14

Since the function ÎR(S) contains two additive terms, it is sufficient to show that each

of them is monotone and submodular. The second term
∑

v∈S(1 − γv) is a linear function

and thus, it is monotone and submodular. For the first additive term, we see that Γ
|R|·n is

a constant and only need to show that CovR(S) is monotone and submodular. Given the

collection of ROIS samplesR in which Rj ∈ R is a list of nodes, the function CovR(S) is

just the count of ROIS samples that intersect with the set S. In other words, it is equivalent

to a covering function in a set system where ROIS samples are elements and nodes are

sets. A set covers an element if the corresponding node is contained in the corresponding
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ROIS sample. It is well known that any covering function is monotone and submodular

[107] and thus, the CovR(S) has the same properties.
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CHAPTER 3

INFLUENCE MAXIMIZATION

In this topic, we study three key problems and propose near-optimal approximation al-

gorithms that significantly surpass the state-of-the-art methods in terms of efficiency by

several orders of magnitudes. Our proposed algorithms are able to handle billion-scale

networks within a matter of seconds.

3.1 Optimal Sampling Algorithms for Influence Maximization

Problem Definition: Given the propagation models defined previously, the Influence

Maximization (IM) problem is defined as follows,

Definition 6 (Influence Maximization (IM)). Given a graph G = (V,E,w), an integer

1 ≤ k ≤ |V | and a propagation model, the Influence Maximization problem asks for a

seed set Ŝk ⊂ V of k nodes that maximizes the influence spread I(Ŝk) under the given

propagation model.

Summary of contributions:

• We generalize the RIS sampling methods in [11, 106, 105] into a general frame-

work which characterizes the necessary conditions to guarantee the (1 − 1/e − ε)-

approximation factor. Based on the framework, we define classes of RIS thresholds

and two types of minimum thresholds, namely, type-1 and type-2.

• We propose the Stop-and-Stare Algorithm (SSA) and its dynamic version, D-SSA,

which both guarantee a (1 − 1/e − ε)-approximate solution and are the first algo-

rithms to achieve, within constant factors, the type-1 and type-2 minimum thresholds,
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respectively. Our proposed methods are not limited to solve influence maximization

problem but also can be generalized for an important class of hard optimization prob-

lems over samples/sketches.

• Our framework and approaches are generic and can be applied in principle to sample-

based optimization problems to design high-confidence approximation algorithm us-

ing (asymptotically) minimum number of samples.

• We carry extensive experiments on various real networks with up to several billion

edges to show the superiority in performance and comparable solution quality. To

test the applicability of the proposed algorithms, we apply our methods on an IM-

application, namely, Targeted Viral Marketing (TVM). The results show that our

algorithms are up to 1200 times faster than the current best method on IM problem

and, for TVM, the speedup is up to 500 times.

We summarize the frequently used notations in Table 24.

Table 12.: Table of notations

Notation Description

n,m #nodes, #edges of graph G = (V,E,w).

I(S) Influence Spread of seed set S ⊆ V .

OPTk The maximum I(S) for any size-k seed set S.

Ŝk The returned size-k seed set of SSA/D-SSA.

S∗k An optimal size-k seed set, i.e., I(S∗k) = OPTk.

Rj A random RR set.

R A collection of random RR sets.

CovR(S) #RR sets Rj ∈ R covered by S, i.e., Rj ∩ S 6= ∅.

ÎR(S), Î(S) CovR(S)
|R| .

Υ(ε, δ) Υ(ε, δ) = (2 + 2
3ε) ln 1

δ
1
ε2

.
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3.1.1 Unified RIS framework

This section presents the unified RIS framework, generalizing all the previous meth-

ods of using RIS sampling [11, 106, 105, 89] for IM. The unified framework characterizes

the sufficient conditions to guarantee an (1 − 1/e − ε)-approximation. Subsequently, we

will introduce the concept of RIS threshold in terms of the number of necessary samples to

guarantee the solution quality and two types of minimum RIS thresholds, i.e., type-1 and

type-2.

3.1.1.1 Preliminaries

RIS sampling: The major bottle-neck in the traditional methods for IM [55, 70, 47,

87] is the inefficiency in estimating the influence spread. To address that, Borgs et al.

[11] introduced a novel sampling approach for IM, called Reverse Influence Sampling (in

short, RIS), which is the foundation for TIM/TIM+[106] and IMM[105], the state-of-the-

art methods.

a

b

c

d0.3

Generate a collection
of random RR sets

𝑅1 = 𝑏, 𝑎

ℛ =
,

𝑅2 = 𝑑, 𝑐, 𝑎

,

𝑅3 = 𝑐, 𝑎

Fig. 12.: An example of generating random RR sets under the LT model. Three random

RR sets R1, R2 and R3 are generated. Node a has the highest influence and is also the most

frequent element across the RR sets.

Given a graph G = (V,E,w), RIS captures the influence landscape of G through

generating a setR of random Reverse Reachable (RR) sets. The term ‘RR set’ is also used

in TIM/TIM+ [106, 105] and referred to as ‘hyperedge’ in [11]. Each RR set Rj is a subset

of V and constructed as follows,
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Definition 7 (Reverse Reachable (RR) set). Given G = (V,E,w), a random RR set Rj is

generated from G by 1) selecting a random node v ∈ V 2) generating a sample graph g

from G and 3) returning Rj as the set of nodes that can reach v in g.

Node v in the above definition is called the source of Rj . Observe that Rj contains the

nodes that can influence its source v.

If we generate multiple random RR sets, influential nodes will likely appear frequently

in the RR sets. Thus a seed set S that covers most of the RR sets will likely maximize

the influence spread I(S). Here a seed set S covers an RR set Rj , if S ∩ Rj 6= ∅. For

convenience, we denote the coverage of set S as follows,

CovR(S) =
∑
Rj∈R

min{|S ∩Rj|, 1} (3.1)

An illustration of this intuition and how to generate RR sets is given in Fig. 12. In the

figure, three random RR sets are generated following the LT model with sources b, d and

c, respectively. The influence of node a is the highest among all the nodes in the original

graph and also is the most frequent node across the RR sets. This observation is captured

in the following lemma in [11].

Lemma 17 ([11]). Given G = (V,E,w), a seed set S ⊂ V , for a random RR set Rj

generated from G,

I(S) = nPr[S covers Rj]. (3.2)

Lemma 30 says that the influence of a node set S is proportional to the probability that

S intersects with a random RR set. Define

ÎR(S) =
CovR(S)

|R|
,

an approximate of I(S). When the context is clear, we also ignoreR and write Î(S) instead
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of ÎR(S). Thus, to find S that maximize I(S) we can find S to maximize Î(S), i.e., to find

subset S that covers as many Rj as possible. The most important question addressed in this

paper is about the minimum size ofR to provide bounded-error guarantees.

(ε, δ)-approximation: The bounded-error guarantee we seek for in our influence max-

imization algorithms, (1−1/e− ε) with probability at least (1−δ), is based on the concept

of (ε, δ)-approximation.

Definition 8 ((ε, δ)-approximation). Let Z1, Z2, ... be i.i.d. random variables in [0, 1] with

mean µZ and variance σ2
Z . A Monte Carlo estimator,

µ̂Z =
1

T

T∑
i=1

Zi (3.3)

is said to be an (ε, δ)-approximation of µZ if

Pr[(1− ε)µZ ≤ µ̂Z ≤ (1 + ε)µZ ] ≥ 1− δ (3.4)

Let R1, R2, R3, . . . , Rj, . . . be the random RR sets generated in either SSA or D-SSA

algorithms. Given a subset of nodes S ⊂ V , define Zj = min{|Rj ∩ S|, 1}, the Bernouli

random variable with mean E [Zj] = I(S)/n. Further, define Yj = Zj − E [Zj], then Yj is

a martingale [105], i.e., E [Yi|Y1, Y2, . . . , Yi−1] = Yi−1 and E [Yi] < +∞. This martingale

view of Yj is adopted from [105] to cope with the fact that Yj might be weakly dependent

due to the stopping conditions. Let µ̂Z = 1
T

∑T
i=1 Zi, an estimate of µZ . Corollaries 1

and 2 in [105] gives the following two concentration inequalities.

Lemma 18 ([105]). For T > 0 and ε > 0, the following inequalities hold,

Pr[µ̂ > (1 + ε)µ] ≤ exp (
−Tµε2

2 + 2
3
ε

), (3.5)

Pr[µ̂ < (1− ε)µ] ≤ exp (
−Tµε2

2
). (3.6)

Equivalently, we can derive from Lem. 18 the sufficient number of samples to provide
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an (ε, δ)-approximation.

Corollary 1. For fixed ε > 0 and δ ∈ (0, 1),

Pr[µ̂ > (1 + ε)µ] ≤ δ, if T ≥
2 + 2

3
ε

ε2
ln

1

δ

1

µ
= Υ(ε, δ)

1

µ
,

Pr[µ̂ < (1− ε)µ] ≤ δ, if T ≥ 2

ε2
ln(

1

δ
)
1

µ
.

3.1.1.2 RIS Framework and Thresholds

Based on Lem. 30, the IM problem can be solved by the following two-step algorithm.

• Generate a collection of RR sets,R, from G.

• Use the greedy algorithm for the Max-coverage problem [56] to find a seed set Ŝk

that covers the maximum number of RR sets and return Ŝk as the solution.

As mentioned, the core issue is to determine the minimum θ(ε, δ) given a predefined

setting of ε, δ. For IM, this means “How many RR sets are sufficient to provide a good

approximate solution?”. [106, 105] propose two such theoretical thresholds and two prob-

ing techniques to realistically estimate those thresholds. However, their thresholds are not

known to be any kind of minimum and the probing method is ad hoc in [106] or far from

the proposed threshold in [105]. Thus, they cannot provide any guarantee on the optimality

of the number of samples generated.

We look into the cores of the techniques in [106, 105, 11, 89] and capture the essential

conditions to achieve an (1− 1/e− ε) approximation for Influence Maximization problem.

By satisfying these critical conditions, we aim to achieve a better approach rather than the

prescribing a explicit threshold θ as in previous work [106, 105, 11, 89].

RIS Critical conditions. Suppose that there is an optimal seed set S∗k , which has the
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maximum influence in the network1. Given 0 ≤ ε, δ ≤ 1, our unified RIS framework

enforces two conditions:

Pr[̂I(Ŝk) ≤ (1 + εa)I(Ŝk)] ≥ 1− δa (3.7)

and

Pr[̂I(S∗k) ≥ (1− εb)OPTk] ≥ 1− δb (3.8)

where δa + δb ≤ δ and (1− 1
e
) εa+εb

1+εa
≤ ε.

Based on the above conditions, we define the RIS threshold as the following.

Definition 9 (RIS Threshold). Given a graph G, εa ∈ (0,∞) and εb, δa, δb ∈ (0, 1),

N(εa, εb, δa, δb) is called an RIS Threshold in G w.r.t εa, εb, δa, δb, if |R| ≥ N(εa, εb, δa, δb)

implies Eqs. 3.7 and 3.8 hold together.

The RIS threshold gives a sufficient condition to achieve a (1−1/e−ε)-approximation

as stated below. The proof of this theorem as well as those of latter lemmas/theorems are

located in our appendix.

Theorem 7. Given a graph G, εa ∈ [0,∞), and εb, δa, δb ∈ (0, 1), let ε = (1− 1
e
) εa+εb

1+εa
and

δ ≥ δa + δb, if the number of RR sets |R| ≥ N(εa, εb, δa, δb), then the two-step algorithm in

our RIS framework returns Ŝk satisfying

Pr[I(Ŝk) ≥ (1− 1/e− ε)OPTk] ≥ 1− δ. (3.9)

That is Ŝk is an (1− 1/e− ε)-approximate solution with high probability (w.h.p.)

Existing RIS thresholds. For any ε, δ ∈ (0, 1), Tang et al. established in [106] an

1If there are multiple optimal sets with influence, OPTk, we choose the first one alpha-
betically to be S∗k .
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RIS threshold,

N

(
ε

2
,
ε

2
,
δ

2

(
1−

(
n
k

)−1
)
,
δ

2

(
n
k

))
= (8 + 2ε)n

ln 2/δ + ln
(
n
k

)
ε2OPTk

In a later study [105], they reduced this number to another RIS threshold from Theorem 1

in [105],

N

(
ε1, ε− ε1,

δ

2

(
1−

(
n
k

)−1
)
,
δ

2

(
n
k

)−1
)

= 2n
((1− 1/e)α + β)2

ε2OPTk
,

where α = (ln 2
δ
)
1
2 , β = (1− 1/e)

1
2

(
ln 2

δ
+ ln

(
n
k

)) 1
2 and ε1 = ε·α

(1−1/e)α+β
.

Simplify the above equation, we have

((1− 1/e)α + β)2 ≤ 2((1− 1/e)2α2 + β2)

= 2(1− 1/e)((1− 1/e) ln
2

δ
+ ln

2

δ
+ ln

(
n
k

)
)

≤ 2(1− 1/e)

(
2 ln

2

δ
+ ln

(
n
k

))
.

Thus, we obtain a simplified threshold,

N = 4

(
1− 1

e

)
n

2 ln(2/δ) + ln
(
n
k

)
ε2OPTk

(3.10)

≤ 8

(
1− 1

e

)
ln(2/δ) + ln

(
n
k

)
ε2

n

k
(3.11)

Unfortunately, computing OPTk is intractable, thus, the proposed algorithms have to

generate θ OPTk
KPT+ RR sets, where KPT+ is the expected influence of a node set obtained by

sampling k nodes with replacement from G and the ratio OPTk
KPT+ ≥ 1 is not upper-bounded.

That is they may generate many times more RR sets than needed as in [106].

3.1.1.3 Two Types of Minimum Thresholds

Based on the definition of RIS threshold, we now define two strong theoretical limits,

i.e. type-1 minimum and type-2 minimum thresholds. In Section 4.4, we will prove that
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our first proposed algorithm, SSA, achieves, within a constant factor, a type-1 minimum

threshold and later, in Section 3.1.4, our dynamic algorithm, D-SSA, is shown to obtain,

within a constant factor, the strongest type-2 minimum threshold.

If N(εa, εb, δa, δb) is an RIS threshold, then any N such that N ≥ N(εa, εb, δa, δb) is

also an RIS threshold. We choose the smallest number over all such RIS thresholds to be

type-1 minimum as defined in Def. 10.

Definition 10 (type-1 minimum threshold). Given 0 ≤ ε, δ ≤ 1 and εa ∈ (0,∞), εb, δa, δb ∈

(0, 1) satisfying δa + δb ≤ δ and (1 − 1
e
) εa+εb

1+εa
≤ ε, N (1)

min(εa, εb, δa, δb) is called a type-1

minimum threshold w.r.t εa, εb, δa, δb if N (1)
min(εa, εb, δa, δb) is the smallest number of RR sets

that satisfies both Eq. 3.7 and Eq. 3.8.

All the previous methods [11, 106, 105] try to approximate N (1)
min(εa, εb, δa, δb) for

some setting of εa, εb, δa, δb, however, they fail to provide any guarantee on how close their

numbers are to that threshold. In contrast, we show that SSA achieves, within a constant

factor, a type-1 minimum threshold in Section 4.4. Next, we give the definition of a stronger

type-2 minimum threshold which is achieved by D-SSA as shown in Section 3.1.4.

Definition 11 (type-2 minimum threshold). Given 0 ≤ ε, δ ≤ 1, N (2)
min(ε, δ) is called the

type-2 minimum threshold if

N
(2)
min(ε, δ) = min

εa,εb,δa,δb
N

(1)
min(εa, εb, δa, δb) (3.12)

where (1− 1
e
) εa+εb

1+εa
= ε and δa + δb = δ and εa ∈ (0,∞), εb, δa, δb ∈ (0, 1).

Type-2 minimum threshold is the tightest threshold that one can achieve using the

RIS-framework.
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3.1.2 Stop-and-Stare Algorithm (SSA)

In this section, we present Stop-and-Stare Algorithm (SSA), the first approximation

algorithm that meets (asymptotically) a type-1 minimum threshold.

Algorithm 10: SSA Algorithm
Input: Graph G, 0 ≤ ε, δ ≤ 1, and a budget k

Output: An (1− 1/e− ε)-optimal solution, Ŝk with at least (1− δ)-probability

Choose ε1, ε2, ε3 satisfying Eqs. 3.14. For example, recommended values for

ε1, ε2, ε3 are in Eq. 3.15

Nmax = 8 1−1/e
2+2ε/3

Υ
(
ε, δ

6
/
(
n
k

))
n
k

; imax = dlog2
2Nmax

Υ(ε,δ/3)
e;

Λ = Υ(ε, δ
3imax

); Λ1 ← (1 + ε1)(1 + ε2)Υ(ε3,
δ

3imax
)

R ← Generate Λ random RR sets

repeat
Double the size ofR with new random RR sets

<Ŝk, Î(Ŝk)>← Max-Coverage(R, k, n)

if CovR(Ŝk) ≥ Λ1 then . *[f]Condition C1

δ′2 = δ2
3imax

;Tmax = 2|R|1+ε2
1−ε2

ε23
ε22

Ic(Ŝk)← Estimate-Inf(G, Ŝk, ε2, δ′2, Tmax)

if Î(Ŝk) ≤ (1 + ε1)Ic(Ŝk) then . *[f]Condition C2

return Ŝk

end

end

until |R| ≥ Nmax;

return Ŝk
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3.1.2.1 SSA Algorithm

At a high level, SSA, presented in Alg. 10, consists of multiple iterations. In each

iteration, it follows the RIS framework to generate (additional) RR sets and uses the Max-

Coverage (Alg. 11) to find a candidate solution Ŝk. If Ŝk passes the quality check, Lines

8-12, the algorithm stops and outputs Ŝk. Otherwise, it doubles the number of RR sets

and advances to the next iteration. The name Stop-and-Stare is based on the view that the

algorithm “scans” through a stream of samples and stops at exponential check points to

stare at the the generated samples to see if it can find a provably good solution. We enforce

a nominal cap on the number of samples Nmax = 8 1−1/e
2+2ε/3

Υ
(
ε, δ

6
/
(
n
k

))
n
k

. Thus, the number

of iterations is at most imax = dlog2
2Nmax

Υ(ε,δ/3)
e = O(log2 n) (Line 2).

Specifically, the algorithm starts by determining parameters ε1, ε2, ε3 satisfying (1 −
1
e
) εa+εb

1+εa
= ε (Line 1). For each iteration t = 1, 2, . . . , imax, SSA doubles the number of

generated RR sets in R. Thus, the number of samples at an iteration t is |R| = Λ2t−1,

where Λ = Υ(ε, δ/(3imax)). After that, SSA invokes Max-Coverage (Alg. 11) to find a

candidate solution Ŝk and its influence estimation

Î(Ŝk) =
CovR(Ŝk)n

|R|
.

The condition CovR(Ŝk) ≥ Λ1 (Line 8) is to guarantee that there are sufficient samples to

estimate the influence accurately within a relative error ε3. If the condition is met, SSA

independently generates another collection of RR sets R′ in Estimate-Inf (Alg. 12) to

obtain an accurate estimation of Ŝk influence (with a relative error ε2). This estimation is

compared against Î(Ŝk) and the SSA stops when the two estimations are close (Line 11),

i.e., when

Î(Ŝk) ≤ (1 + ε1)Ic(Ŝk).

Stopping conditions. Ignore the rare case that SSA reaches the cap Nmax on the
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number of samples. SSA stops only when the following two stopping conditions are met.

(C1) The 1st condition CovR(Ŝk) ≥ Λ1 (Line 8) ensures that the influence of S∗k can be

estimated with a relative error at most ε3 as shown in Lems. 21 and 22.

(C2) The 2nd condition Î(Ŝk) ≤ (1 + ε1)Ic(Ŝk) (Line 11) guarantee that the estimation

Î(Ŝk) is not far from the error-bounded estimation Ic(Ŝk) returned by the Estimate-

Inf procedure. Recall that Ic(Ŝk) has a relative error at most ε2 comparing to the true

influence I(Ŝk).

As we will prove in Sec. 4.4, the two stopping conditions are sufficient to guarantee the

(1− 1/e− ε)-approx. of Ŝk.

Algorithm 11: Max-Coverage procedure
Input: RR sets (R), k and number of nodes (n)

Output: An (1− 1/e)-optimal solution, Ŝk and its estimated influence Ic(Ŝk)

Ŝk = ∅

for i = 1 : k do
v̂ ← arg max{v∈V }(CovR(Ŝk ∪ {v})− CovR(Ŝk))

Add v̂ to Ŝk
end

return <Ŝk,CovR(Ŝk) · n/|R|>

Finding Max-Coverage. Standard greedy algorithm in Max-coverage is used to find

Ŝk. The algorithm repeatedly selects node u with maximum marginal gain, the number of

RR sets that are covered by u but not the previously selected nodes. The well-known result

in [81] states that CovR(Ŝk) is at leat (1 − 1/e) the maximum coverage obtained by any

size-k seed set. This algorithm can be implemented in linear time in terms of the total size

of the RR sets [11].
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Influence Estimation. Estimate-Inf, presented in Alg. 12, gives an estimation Ic(S)

with one-side error guarantee

Pr[Ic(S) ≤ (1 + ε′)I(S)] ≥ 1− δ′.

Algorithm 12: Estimate-Inf procedure
Input: A seed set S ⊂ V , ε′ > 0, δ′ ∈ (0, 1) and maximum number of samples,

Tmax

Output: Ic(S) or −1 if exceeds Tmax samples.

Λ2 = 1 + (1 + ε′)Υ(ε′, δ′)

Cov = 0

for T = 1 : Tmax do
Generate Rj ←RIS(G)

Cov = Cov + min{|Rj ∩ S|, 1}

if Cov ≥ Λ2 then

return nΛ2/T ; // n: number of nodes

end

end

return -1 ; // Exceeding Tmax RR sets

The algorithm generates RR sets Rj and counts the number of “successes”, defined

as the number of RR sets that intersect with S. When the number of successes reaches

Λ2 = 1 + (1 + ε′)Υ(ε′, δ′), the algorithm returns Ic(S) = Λ2n
T

, where T is the number of

generated RR sets.

Estimate-Inf is based on the Stopping-Rule algorithm in [26] with an important dif-

ference. The algorithm stops and return −1 if Tmax samples has been generated. Choosing

Tmax proportional to the number of samples inR (Line 9, SSA) avoid time-wasting on es-
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timating influence for Ŝk at early iterations in SSA. Those early Ŝk candidates often have

small influence, thus, require up to Ω(n) samples to estimate. Without the cap Tmax, SSA

will suffer a quadratic (or worse) time complexity.

Similar to the proof of the stopping theorem in [26], we obtain the following lemma

with the proof in the appendix.

Lemma 19. When Estimate-Inf terminates within Tmax samples, the returned estimation

Ic(S) satisfies

Pr[Ic(S) ≤ (1 + ε′)I(S)] ≥ 1− δ′. (3.13)

In SSA Lines 9 and 10, Estimate-Inf is invoked with the parameters ε′ = ε2, δ′ =

δ2/(3imax), and Tmax = Θ(|R|).

3.1.2.2 Parameter Settings for SSA

In SSA, we can select arbitrary ε1, ε2, ε3 ∈ (0, 1) as long as they satisfy the following,

(1− 1

e
)
ε1 + ε2 + ε1ε2 + ε3
(1 + ε1)(1 + ε2)

≤ ε (3.14)

In practice, the selection of ε1, ε2 and ε3 has considerate effect on the running time. Through

our experiments, we observe good performance yields when

• ε1 > ε ≈ ε3 for small networks

• ε1 ≈ ε ≈ ε3 for moderate network (few million edges)

• ε1 � ε2 ≈ ε3 for large networks (hundreds of millions of edges).
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For simplicity, we use the following default setting for SSA.

ε2 = ε3 = (1− 1/e)−1ε/2 (3.15)

ε1 =
1 + (1− 1/e− ε)−1ε/2

1 + ε2
− 1. (3.16)

For example, when ε = 0.1 we can set

ε1 = 1/78, ε2 = ε3 = 2/25. (3.17)

In Sect. 3.1.4, we will later propose D-SSA, a Stop-and-Stare algorithm with “dy-

namic” parameters. D-SSA can automatically select a near-optimal setting of ε1, ε2, ε3.

3.1.3 SSA Theoretical Analysis

In this section, we will prove that SSA returns a (1 − 1/e − ε)-approximate solution

w.h.p. in Subsec. 6.1.2.2. Subsequently, SSA is shown to require no more than a constant

factor of a type-1 minimum threshold of RR sets w.h.p. in Subsec. 3.1.3.2.

3.1.3.1 Approximation Guarantee

We will prove that SSA returns a (1 − 1/e − ε)-approximate solution Ŝk w.h.p. The

major portion of the proof is to bound the probabilities of the following three bad events

1. |R| ≥ Nmax and I(Ŝk) < (1− 1/e− ε)

2. The error in the estimation Ic(Ŝk) exceeds ε2 (Lem. 21)

3. The error in the estimation Î(S∗k), the estimation of the OPTk, exceeds ε3 (Lem. 22).

Finally, Theorem 24, assuming none of the bad events happen, shows that I(Ŝk) ≥ (1 −

1/e− ε)OPTk.

The probability of the first bad event follows directly from the threshold θ in Eq. 3.10

with δ replaced by δ/3.
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Lemma 20. We have

Pr[|R| ≥ Nmax and I(Ŝk) < (1− 1/e− ε)OPTk] ≤ δ/3.

Since, we do not know the iteration that SSA will stop, we will bound the probabilities

of the other two bad events for all iterations. The bound on the relative error of Ic(Ŝk):

Lemma 21. For any iteration t = 1, 2, . . . , imax in SSA,

Pr[Ic(Ŝk) > (1 + ε2)I(Ŝk)] ≤ δ/3imax. (3.18)

Proof. The inequality holds trivially if Estimate-Inf return−1. Otherwise, it follows from

Lem. 19 with ε′ = ε2, δ′ = δ2/(3imax).

Since |R| = Λ2t−1 is fixed, we apply the Chernoff’s bound in Lem. 18 over |R|

random variables to obtain the following error bound on the estimation of Î(S∗k).

Lemma 22. For any iteration i = 1, 2, . . . , imax in SSA,

Pr[̂I(S∗k) < (1− ε(i)3 )OPTk] ≤ δ/(3imax) (3.19)

where ε(i)3 =
√

2n ln 3imax
δ

|R|OPTk
, and |R| = Λ2t−1 at iteration i.

Lem. 21 and 22 are sufficient to prove the approximation guarantee of SSA as stated

by the following theorem.

Theorem 8. Given 0 ≤ ε, δ ≤ 1, SSA returns a seed set Ŝk satisfying

Pr[I(Ŝk) ≥ (1− 1/e− ε)OPTk] ≥ 1− δ. (3.20)

3.1.3.2 Achieving Type-1 Minimum Threshold

We will show that for any εa, εb, δa, δb satisfying the conditions of RIS threshold

(Def. 9), there exists a setting of ε1, ε2, ε3 such that SSA stops withinO(N
(1)
min(εa, εb, δa, δb))

116



www.manaraa.com

samples (w.h.p.)

We need to bound the total number of RR sets generated by SSA. Recall that SSA

generates two different types of RR sets: 1) RR sets in R to find Ŝk through solving Max-

Coverage and 2) RR sets in Estimate-Inf for the stopping condition C2. At each iteration,

the number of type 2 RR sets is at most 21+ε2
1−ε2

ε23
ε22
|R| = Θ(|R|). Thus, the core part is to

prove that: “SSA will stop w.h.p. when |R| = O(N1(εa, εb, δa, δb))”.

Our assumptions. Under the assumptions that make the Chernoff’s bound (Lem. 18)

tight up to a constant in the exponent, we show that SSA stops withinO(N
(1)
min(εa, εb, δa, δb)).

The assumptions, referred to as the range conditions, are as follows.

• OPTk ≤ 1
2
|V |. That is no k nodes can influence more than half of the nodes in the

network. This assumption guarantees µ ≤ 1/2, needed for the tightness of Cher-

noff’s bound in Lem. 13 in the appendix.

• ε ≤ 1/4. The constant 1/4 can be replaced by any constant c < 1, assuming δ is

sufficiently small. This assumption guarantees that εb ≤ 1/2, which is also needed

for Lem. 13.

• 1/δ = Ω(n). This assumption guarantee that δ is sufficiently small (Lem. 13). This is

compatible with the settings in the previous works [106, 105, 89], in which δ = 1/n.

Consider positive εa, εb, δa, δb ∈ (0, 1) satisfying

(1− 1

e
)
εa + εb
1 + εa

= ε ≤ 1

4
and (3.21)

δa + δb = δ <
1

log2 n
. (3.22)

We will determine suitable parameters ε1, ε2, ε3 for SSA so that

(1− 1

e
)
ε1 + ε2 + ε1ε2 + ε3
(1 + ε1)(1 + ε2)

= ε. (3.23)
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Denote T1 = N
(1)
min(εa, εb, δa, δb). From Def. 10 of the type-1 threshold, |R| ≥ T1

leads to

Pr[̂IR(Ŝk) > (1 + εa)I(Ŝk)] ≤ δa and (3.24)

Pr[̂IR(S∗k) < (1− εb)OPTk] ≤ δb. (3.25)

An upper bound on the number of RR sets needed in R is given in the following

lemma.

Lemma 23. Let ε0 = min{ε2, ε3, εb}, and

TSSA = max{T1, αΥ(ε0,
δ

3imax
)

n

OPTk
},

for some constant α > 1. Under the range conditions,

TSSA = O(T1).

Now we bound the estimation error in the Estimate-Inf procedure at each iteration.

At iteration 1 ≤ i ≤ imax,

Tmax = 2|R|1 + ε2
1− ε2

ε23
ε22

= 2iΛ
1 + ε2
1− ε2

ε23
ε22

(3.26)

is a fixed number. Denote by Rc, the set of RR sets generated in Estimate-Inf. Apply the

concentration inequality in Eq. (3.5), for Tmax RR sets inRc we have

Lemma 24. For iteration 1 ≤ i ≤ imax in SSA, let ε(i)2 =
√

(ln 1/δ+ln 3imax)n
Tmax

. The following

holds

Pr[(|Rc| ≥ Tmax) and ÎRc(Ŝk) < (1− ε(i)2 )I(Ŝk)] ≤
δ

3imax
.

Theorem 9. Consider εa, εb, δa, δb satisfying Eqs. (3.21) and (3.22). Under the range

conditions, there exist SSA parameters ε1, ε2, ε3, satisfying Eq. (3.23), and a constant

c > 1 such that if |R| ≥ cN
(1)
min(εa, εb, δa, δb), SSA will stop w.h.p.
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Similarly, we can show the reverse direction.

Theorem 10. Consider SSA’s with ε1, ε1, ε2, ε3, satisfying Eq. (3.23) and ε2 ≤ ε1
1+ε1

.

Under the range conditions, there exist εa, εb, δa, δb satisfying Eqs. (3.21) and (3.22), and a

constant c > 1 such that if |R| ≥ cN1(εa, εb, δa, δb), SSA will stop w.h.p.

The proof is similar to that of Theorem 9 and is omitted.

SSA limitation. First, the performance of SSA depends on the selection of the pa-

rameters ε1, ε2, ε3. While the presetting in Eq. 3.15 provides decent performance for most

cases, there will be certain input that results in less than ideal performance. Secondly, the

samples in R′, the sample pool to verify the quality of the candidate solution Ŝk are not

used efficiently. They are only used once and then discarded. Alternative strategies that

reuse the sample in R′ may potentially reduce the number of the generated samples and

provide better performance.

3.1.4 Dynamic Stop-and-Stare Algorithm

In this section, we present D-SSA, a stop-and-stare algorithm that automatically se-

lects near-optimal ε1, ε2, ε3 settings. That is the sample size of D-SSA meets, asymptot-

ically, the type-2 minimum threshold, the strongest guarantee for methods following the

RIS framework.

The algorithm D-SSA, summarized in Alg. 13, works on a single stream of RR sets

R1, R2, ..., Ri, .... The algorithm consists of multiple iterations t = 1, 2, . . . , tmax, where

tmax = O(log n) is the maximum number of iterations.

At an iteration t, the algorithm looks into the first Λ×2t RR sets, for a fixed Λ (Line 3),

and divide those samples into two halves.

• The first half Rt = {R1, . . . , RΛ2t−1} will be used to find the candidate solution Ŝk

via solving a max-coverage problem Max-Coverage(Rt, k).
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Algorithm 13: D-SSA Algorithm
Input: Graph G, 0 ≤ ε, δ ≤ 1, and k

Output: An (1− 1/e− ε)-optimal solution, Ŝk

Nmax = 8 1−1/e
2+2ε/3

Υ
(
ε, δ

6
/
(
n
k

))
n
k

;

tmax = dlog2(2Nmax/Υ(ε, δ
3
))e; t = 0;

Λ = Υ(ε, δ
3tmax

); Λ1 = 1 + (1 + ε)Υ(ε, δ
3tmax

);

repeat
t← t+ 1;

Rt = {R1, . . . , RΛ2t−1};

Rc
t = {RΛ2t−1+1, . . . , RΛ2t};

< Ŝk, Ît(Ŝk) >← Max-Coverage(Rt, k);

if CovRct (Ŝk) ≥ Λ1 then . Condition D1

Ict(Ŝk)← CovRct (Ŝk) · n/|R
c
t |

ε1 ← Ît(Ŝk)/Ict(Ŝk)− 1; ε2 ← ε
√

n(1+ε)

2t−1Ict (Ŝk)
; ε3 ← ε

√
n(1+ε)(1−1/e−ε)
(1+ε/3)2t−1Ict (Ŝk)

εt = (ε1 + ε2 + ε1ε2)(1− 1/e− ε) + (1− 1
e
)ε3

if εt ≤ ε then . Condition D2

return Ŝk

end

end

until |Rt| ≥ Nmax;

return Ŝk;

• The second halfRc
t = {RΛ2t−1+1, . . . , RΛ2t} will be used to verify the quality of the

candidate solution Ŝk.

Note that Rt+1 = Rt ∪ Rc
t , thus, the samples used in verifying Ŝk will be reused to

find the candidate solution in next iteration.

To verify whether Ŝk meets the approximation guarantee with high probability (whp),

120



www.manaraa.com

D-SSA, in Line 9, will first apply the stopping rule condition in [26] to check if the number

of samples in Rc
t are sufficient to guarantee an (ε, δ

3tmax
)-approximation of I(Ŝk). If not, it

advances to the next iteration. Otherwise, it will automatically estimate the best possible

precision parameters ε1, ε2, ε3 in Lines 11 and 12. Once the combination of those precision

parameter is sufficiently small, i.e.,

εt = (ε1 + ε2 + ε1ε2)(1− 1/e− ε) + (1− 1/e)ε3 ≤ ε,

the algorithm returns Ŝk as an (1− 1/e− ε)-approximation solution (whp).

In the unfortunate event that the algorithm does not meet the condition εt ≤ ε for

any t, it will terminate when the number of samples in the algorithm reaches to the cap

Nmax = 8 1−1/e
2+2ε/3

Υ
(
ε, 1

6
δ/
(
n
k

))
n
k

.

3.1.4.1 Theoretical Guarantees Analysis

We will subsequently show that D-SSA achieves the (1 − 1/e − ε)-approximation

factor (whp) in Subsec. 3.1.4.1 and requires only, to within a constant factor, the strongest

type-2 minimum threshold of the RR sets (whp) in Subsec. 3.1.4.1.

Approximation Guarantee: We will show that D-SSA returns a (1−1/e−ε) solution

with probability at least 1− δ. For clarity, we present most of the proofs in the appendix.

Recall that D-SSA stops when either 1)the number of samples exceeds the cap, i.e.,

|Rt| ≥ Nmax or 2) εt ≤ ε for some t ≥ 1. In the first case, Nmax were chosen to guarantee

that Ŝk will be a (1− 1/e− ε)-approximation solution w.h.p.

Lemma 25. Let B(1) be the bad event that

B(1) = (|Rt| ≥ Nmax) ∩ (I(Ŝk) < (1− 1/e− ε)OPTk).

We have

Pr[B(1)] ≤ δ/3.
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In the second case, the algorithm stops when εt ≤ ε for some 1 ≤ t ≤ tmax. The

maximum number of iterations tmax is bounded by O(log n) as stated below.

Lemma 26. The number of iterations in D-SSA is at most tmax = O(log n).

For each iteration t, we will bound the probabilities of the bad events that lead to

inaccurate estimations of I(Ŝk) throughRc
t , and I(S∗k) throughRt(Lines 9 and 12).

Lemma 27. For each 1 ≤ t ≤ tmax, let

ε̂t be the unique root of f(x) =
δ

3tmax
,

where f(x) = exp

(
−Nt

I(Ŝk)
n

x2

2+2/3x

)
, and

ε∗t = ε

√
n

(1 + ε/3)2t−1OPTk
.

Consider the following bad events

B
(2)
t =

(
Î(c)
t (Ŝk) > (1 + ε̂t)I(Ŝk)

)
,

B
(3)
t =

(
Ît(S∗k) < (1− ε∗t )OPTk]

)
.

We have

Pr[B
(2)
t ],Pr[B

(3)
t ] ≤ δ

3tmax
.

Lemma 28. Assume that none of the bad events B(1), B(2)
t , B(3)

t (t = 1..tmax) happen and

D-SSA stops with some εt ≤ ε. With ε̂t defined in Lem. 27, we have,

ε̂t < ε and consequently (3.27)

I(c)
t (Ŝk) ≤ (1 + ε̂t)I(Ŝk) ≤ (1 + ε)I(Ŝk) (3.28)

We now achieve the approximation guarantee of D-SSA.

122



www.manaraa.com

Theorem 11. D-SSA returns an (1 − 1/e − ε)-approximate solution with probability at

least (1− δ).

Achieving the Type-2 Minimum Threshold: Denote by T2 = N
(2)
min(ε, δ), the type-2

minimum threshold defined in Def. 11. Under the range conditions, we will prove that

D-SSA meets the Type-2 minimum threshold, i.e., it requires O(T2) samples w.h.p. This

is the strongest efficiency guarantee for algorithms following the RIS framework.

The proof is based on the observation that there must exist ε∗a, ε
∗
b , δ
∗
a, δ
∗
b thatN (1)

min(ε∗a, ε
∗
b , δ
∗
a, δ
∗
b ) =

T2. Further, within O(T2) samples, we will have ε2, ε3 ≤ ε∗b/3 and ε1 ≈ ε∗a. Then both con-

ditions D1 (CovRct (Ŝk) ≥ Λ1) and D2 (εt ≤ ε) will be met and the algorithm will stop

w.h.p.

Theorem 12. Given ε, δ, assume the range conditions D-SSA will stop w.h.p withinO(N
(2)
min(ε, δ))

samples.

3.1.5 Experiments

Backing by the strong theoretical results, we will experimentally show that SSA and

D-SSA outperform the existing state-of-the-art IM methods by a large margin. Specifically,

SSA and D-SSA are several orders of magnitudes faster than IMM and TIM+, the best

existing IM methods with approximation guarantee, while having the same level of solution

quality. SSA and D-SSA also require several times less memory than the other algorithms.

To demonstrate the applicability of the proposed algorithms, we apply our methods on a

critical application of IM, i.e., Targeted Viral Marketing (TVM) introduced in [71] and

show the significant improvements in terms of performance over the existing methods.
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Fig. 13.: Expected Influence under LT model.

Table 13.: Datasets’ Statistics

Dataset #Nodes #Edges Avg. degree

NetHELP2 15K 59K 4.1

NetPHY2 37K 181K 13.4

Enron2 37K 184K 5.0

Epinions2 132K 841K 13.4

DBLP2 655K 2M 6.1

Orkut2 3M 234M 78

Twitter [65] 41.7M 1.5G 70.5

Friendster2 65.6M 3.6G 54.8

2From http://snap.stanford.edu
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Fig. 14.: Expected Influence under IC model.

3.1.5.1 Experimental Settings

All the experiments are run on a Linux machine with 2.2Ghz Xeon 8 core processor

and 100GB of RAM. We carry experiments under both LT and IC models on the following

algorithms and datasets.

Algorithms compared. On IM experiments, we compare SSA and D-SSA with the

group of top algorithms that provide the same (1 − 1/e − ε)-approximation guarantee.

More specifically, CELF++ [44], one of the fastest greedy algorithms, and IMM [105],

TIM/TIM+ [106], the best current RIS-based algorithms, are selected. For experimenting

with TVM problem, we apply our Stop-and-Stare algorithms on this context and compare

with the most efficient method for the problem, termed KB-TIM, in [71].

Datasets. For experimental purposes, we choose a set of 8 datasets from various dis-
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ciplines: NetHEPT, NetPHY, DBLP are citation networks, Email-Enron is communication

network, Epinions, Orkut, Twitter and Friendster are online social networks. The descrip-

tion summary of those datasets is in Table 18. On Twitter network, we also have the actual

tweet/retweet dataset and we use these data to extract the target users whose tweets/retweets

are relevant to a certain set of keywords. The experiments on TVM are run on the Twitter

network with the extracted targeted groups of users.

Remark. Since Orkut and Friendster are undirected networks, within those networks

we replace each edge by two oppositely directed edges (arcs). This contrasts to the con-

ference version of this paper in which the Orkut and Friendster networks are treated as

directed networks.

Parameter Settings. For computing the edge weights, we follow the conventional

computation as in [106, 20, 47, 87], the weight of the edge (u, v) is calculated as w(u, v) =

1
din(v)

where din(v) denotes the in-degree of node v.

In all the experiments, we keep ε = 0.1 and δ = 1/n as a general setting or explicitly

stated otherwise. For the other parameters defined for particular algorithms, we take the

recommended values in the corresponding papers if available. We also limit the running

time of each algorithm in a run to be within 24 hours.

3.1.5.2 Experiments with IM problem

To show the superior performance of the proposed algorithms on IM task, we ran the

first set of experiments on four real-world networks, i.e., NetHEPT, NetPHY, DBLP, Twit-

ter. We also test on a wide spectrum of the value of k, typically, from 1 to 20000, except

on NetHEPT network since it has only 15233 nodes. The solution quality, running time,

memory usage are reported sequentially in the following. We also present the actual num-

ber of RR sets generated by SSA, D-SSA and IMM when testing on four other datasets,

i.e., Enron, Epinions, Orkut and Friendster.
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Fig. 15.: Running time under LT model

Solution Quality: We first compare the quality of the solution returned by all the

algorithms on LT and IC models. The results are presented in Fig. 13 and Fig. 14, respec-

tively. The CELF++ algorithm is only able to run on NetHEPT due to time limit. From

those figures, all the methods return comparable seed set quality with no significant dif-

ference. The results directly give us a better viewpoint on the basic network property that

a small fraction of nodes can influence a very large portion of the networks. Most of the

previous researches only find up to 50 seed nodes and provide a limited view of this phe-

nomenon. Here, we see that after around 2000 nodes have been selected, the influence

gains of selecting more seeds become very slim.

Running time: We next examine the performance in terms of running time of the

tested algorithms. The results are shown in Fig. 15 and Fig. 16. Both SSA and D-SSA

significantly outperform the other competitors by a huge margin. Comparing to IMM, the
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Fig. 16.: Running time under IC model

best known algorithm, SSA and D-SSA run up to several orders of magnitudes faster.

TIM+ and IMM show similar running time since they operate on the same philosophy of

estimating optimal influence first and then calculating the necessary samples to guarantee

the approximation for all possible seed sets. However, each of the two steps displays its

own weaknesses. In contrast, SSA and D-SSA follows the Stop-and-Stare mechanism

to thoroughly address those weaknesses and thus exhibit remarkable improvements. In

particular, the speedup factor of D-SSA to IMM can go up to 1200x in the case of NetHEPT

network on the LT model. On most of other cases, the factor stabilizes at several hundred

times.

Comparing between SSA and D-SSA, since D-SSA possesses the type-2 minimum

threshold compared to the weaker type-1 threshold of SSA with the same precision settings

ε, δ, D-SSA performs at least as good as SSA and outperforms in many cases in which the
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Fig. 17.: Memory usage under LT model

fixed setting of SSA falls out of the effective ranges for that network and value k. This

problem is resolved in D-SSA thanks to the dynamic error computation at every iteration.

Memory Usage and Number of RR sets: This experiment is divided into two parts:

1) we report the memory usage in the previous experiments and 2) since the gain in influ-

ence peaks at the selection of 1 to 1000 nodes, we carry new experiments on four other

datasets, i.e., Enron, Epinion, Orkut and Friendster, with k ∈ {1, 500, 1000} to show the

view across datasets of SSA, D-SSA and IMM.

Memory Usage. The results on memory usage of all the algorithms are shown in

Fig. 17 and Fig. 18. We can see that there is a strong correlation between running time and

memory usage. It is not a surprise that SSA and D-SSA require much less memory, up

to orders of magnitude, than the other methods since the complexity is represented by the

number of RR sets and these methods achieve type-1 and type-2 minimum thresholds of
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Fig. 18.: Memory usage under IC model

RR sets.

Across datasets view. We ran SSA, D-SSA and IMM on four other datasets, i.e.,

Enron, Epinions, Orkut and Friendster, with k ∈ {1, 500, 1000} under LT model. The

results are presented in Table 19. In terms of running time, the table reflects our previous

results that SSA and D-SSA largely outperform IMM, up to several orders of magnitudes.

The same pattern happens in terms of the number of RR sets generated. As shown, even in

the most extreme cases of selecting a single node, SSA and D-SSA require several times

fewer RR sets than IMM.

We note that, in the most challenging case of Friendster network with over 3.6 billion

edges, IMM uses 172 GB of main memory while D-SSA and SSA require much lower

memory resource of only 69 and 72 GB respectively.
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Table 14.: Performance of SSA, D-SSA and IMM on various datasets under LT model.

Data

running time (in second (s) or hour (h))

k = 1 k = 500 k = 1000

D-SSA SSA IMM D-SSA SSA IMM D-SSA SSA IMM

Enron 0.5 s 0.6 s 0.7 s 0.1 s 0.1 s 3.1 s 0.1 s 0.1 s 6.9 s

Epinions 0.6 s 0.7 s 0.8 s 0.2 s 0.2 s 4.4 s 0.2 s 0.3 s 12.1 s

Orkut 86.2 s 108.2 s 179.9 s 11.8 s 12.1 s 317.8 s 23.8 s 25.8 s 548.9 s

Friendster 4.1 h 4.7 h 8.1 h 0.3 h 0.5 h n/a 0.3 h 0.5 h n/a

number of RR sets

Enron 96 K 272 K 280 K 24 K 42 K 580 K 24 K 61 K 910 K

Epinions 205 K 570 K 400 K 51 K 97 K 1.2 M 51 K 131 K 1.9 M

Orkut 512 K 1.5 M 1.2 M 64 K 177 K 2.1 M 128 K 230 K 3.3 M

Friendster 77 M 161 M 175 M 4.8 M 17 M n/a 4.8 M 15 M n/a

3.1.5.3 Experiments with TVM problem

In this experiments, we will modify our Stop-and-Stare algorithms to work on Tar-

geted Viral Marketing (TVM) problem and compare with the best existing method, i.e.,

KB-TIM in [71] to show the drastic improvements when applying our methods. In short,

we will describe how we select the targeted groups from actual tweet/retweet datasets of

Twitter and how to modify D-SSA and SSA for TVM problem. Then, we will report the

experimental results. TVM problem and methods: Targeted Viral Marketing (TVM) is

a central problem in economics in which, instead of maximizing the influence over all the

nodes in a network as in IM, it targets a specific group whose users are relevant to a certain

topic and aims at optimizing the influence to that group only. Each node in the targeted

group is associated with a weight which indicates the relevance of that user to the topic.

The best current method for solving TVM is proposed in [71] in which the authors intro-

duce weighted RIS sampling (called WRIS) and integrate it into TIM+ method [106] to
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derive an approximation algorithm, termed KB-TIM. WRIS only differs from the original

RIS at the point of selecting the sampling root. More specifically, WRIS selects the root

node proportional to the node weights instead of uniform selection as in RIS.

In the same way, we incorporate WRIS into D-SSA and SSA for solving TVM prob-

lem. By combining the analysis of WRIS in [71] and our previous proofs, it follows that

the modified D-SSA and SSA preserve the (1 − 1/e − ε)-approximation property as in

IM problem. Extracting the targeted groups: We use tweet/retweet dataset to extract

Table 15.: Topics, related keywords

Topic Keywords #Users

1 bill clinton, iran, north korea, president obama, obama 997,034

2 senator ted kenedy, oprah, kayne west, marvel, jackass 507,465

the users’ interests on two political topics as described in [65]. We choose two groups of

most popular keywords as listed in Table 21, and mine from the tweet data who posted

tweets/reweets containing at least one of those keywords in each group and how many

times. We consider those users to be the targeted groups in TVM experiments with the

relevance/interest of each user on the topic proportional to the frequency of having those

keywords in their tweets. Experimental results:

We run SSA, D-SSA and KB-TIM on Twitter network under LT model with the

targeted groups extracted from tweet dataset as described previously. Since all the algo-

rithms have the same guarantee on the returned solution, we only measure the performance

of these methods in terms of running time and the results are depicted in Fig. 19. In both

cases, D-SSA and SSA consistently witness at least two order of magnitude improvements

(up to 500 times) in running time compared to KB-TIM. D-SSA is also consistently faster

than SSA due to the more optimal type-2 threshold.
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Fig. 19.: Running time on Twitter network

3.1.6 Conclusion

In this paper, we make several significant contributions in solving the fundamental in-

fluence maximization (IM) problem. We provide the unified RIS framework which general-

izes the best existing technique of using RIS sampling to find an (1−1/e−ε)-approximate

solution in billion-scale networks. We introduce the RIS threshold that all the algorithms

following the framework need to satisfy and two minimum thresholds, i.e., type-1 and

type-2. Interestingly, we are able to develop two novel algorithms, SSA and D-SSA,

which are the first methods meeting the two minimum thresholds. Since IM plays a central

roles in a wide range of practical applications, e.g., viral marketing, controlling diseases,

virus/worms, detecting contamination and so on, the developments of SSA and D-SSA

will immediately result in a burst in performance and allow their applications to work in

billion-scale domains. Our approach here can be further coupled with advanced sampling

techniques to produce even more efficient algorithms for IM [85].

Tightness of Chernoff’s bounds

In the following proofs, we use an intermediate results on the optimality of Chernoff-

like in Lem. 2. According to Lemma 4 in [39], we have the following results regarding the
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tightness of the Chernoff-like bounds in the above lemma.

Lemma 29 ([39]). Let X1, X2, . . . , ..., XT be i.i.d random variables taking values 0 or

1, and Pr[Xi = 1] = µ ≤ 1/2. Denote by µ̂ = 1
T

∑T
i=1Xi the average of the random

variables. For every ε ∈ (0, 1/2], if ε2µT ≥ 3, the following hold:

Pr[µ̂ ≤ (1− ε)µ] ≥ exp (−9ε2µT ) and (3.29)

Pr[µ̂ ≥ (1 + ε)µ] ≥ exp (−9ε2µT ). (3.30)

Note that the condition ε ∈ (0, 1/2] can be relaxed into ε ∈ (0, c] for any c < 1 if we

assume sufficiently small δ.

Corollary 2 (Tightness of Chernoff’s bound ). Let X1, X2, . . . be i.i.d random variables

taking values 0 or 1, and Pr[Xi = 1] = µ ∈ (0, 1/2]. For ε ∈ (0, 1/2], δ < 1/e and T > 0,

the following hold

• If Pr
[

1
T

∑T
i=1 Xi < (1− ε)µ

]
≤ δ, then T = Ω(Υ(ε, δ) 1

µ
).

• If Pr
[

1
T

∑T
i=1 Xi > (1 + ε)µ

]
≤ δ, then T = Ω(Υ(ε, δ) 1

µ
).

Proof. If T < 1
9

1
ε2

ln 1
n

, then by Lem. 29, Pr[µ̂ ≤ (1 − ε)µ] ≥ exp(−9ε2µT ) = δ (contra-

diction). Thus, T ≥ 1
9

1
ε2

ln 1
n

= Ω(Υ(ε, δ)).

Similarly, if T < 1
9

1
ε2

ln 1
n

, then Pr[µ̂ ≥ (1 + ε)µ] ≥ exp (−9ε2µT ) = δ (contradic-

tion). Thus,

Pr

[
1

T

T∑
i=1

Xi > (1 + ε)µ

]
≤ δ

implies T ≥ 1
9

1
ε2

ln 1
n

= Ω(Υ(ε, δ)).

The lower bounds also hold for the case whenX1, . . . , XT are weakly dependent (mar-

tingales) as the random variables in Lem. 2.

134



www.manaraa.com

Omitted Proofs of Lemmas and Theorems

Proof of Theorem 1

Apply the union bound. The following two inequalities from Eqs. 7 and 8 hold to-

gether with probability at least 1− (δa + δb).

Î(Ŝk) ≤ (1 + εa)I(Ŝk) (3.31)

I(Ŝ∗k) ≥ (1− εb)I(S∗k). (3.32)

Assume that the above two inequalities hold. We show, by contradiction, that I(Ŝk) ≥

(1− 1/e− ε)OPTk, where ε = (1− 1
e
) εa+εb

1+εa
. Assume the opposite, i.e.,

I(Ŝk) < (1− 1/e− ε)OPTk. (3.33)

Since the greedy algorithm used in Max-Coverage algorithm returns a (1 − 1/e)

approximation [81], the greedy solution Ŝk satisfies CovR(Ŝk) ≥ (1 − 1/e)CovR(S∗k). It

follows that

Î(Ŝk) ≥ (1− 1/e)Î(S∗k).

Extend (3.31) and use the assumption (3.33).

I(Ŝk) ≥ Î(Ŝk)− εaI(Ŝk) ≥ (1− 1/e)Î(S∗k)− εaI(Ŝk)

≥ (1− 1/e)Î(S∗k)− εa(1− 1/e− ε)OPTk (3.34)

Apply Eq. (3.32), we yield

I(Ŝk) ≥ (1− 1/e)(1− εb)I(S∗k)− εa(1− 1/e− ε)OPTk

= (1− 1/e− (1− 1/e− ε)εa + (1− 1/e)εb)OPTk

= (1− 1/e− ε)OPTk (contradiction)
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where ε = (1− 1/e− ε)εa + (1− 1/e)εb), or equivalently, ε = (1− 1
e
) εa+εb

1+εa
.

Thus, Pr[I(Ŝk) ≥ (1− 1/e− ε)OPTk] ≥ 1− (δa + δb).

Proof of Lemma 3

We follow the proof of the Stopping Rule Theorem in [26].

Since Ic(Ŝk) = nΛ2/T , it suffices to show that

Pr[T ≤ nΛ2

(1 + ε2)I(Ŝk)
] ≤ δ2

3 log2 n
, (3.35)

where T ≤ Tmax is the number of RR sets generated.

Let L = b nΛ2

(1+ε2)I(Ŝk)
c. From the definition of Λ2, we obtain that,

L = b
n(1 + (1 + ε2)(2 + 2

3
ε2) ln( 1

δ′2
) 1
ε22

)

(1 + ε2)I(Ŝk)
c (3.36)

≥ (2 +
2

3
ε2) ln(

1

δ′2
)

n

I(Ŝk)ε22
. (3.37)

Since T is an integer, T ≤ nΛ2

(1+ε2)I(Ŝk)
if and only if T ≤ L. But T ≤ L if and only if

CovL =
∑L

j=1 Zj ≥ Λ2. Thus,

Pr[T ≤ nΛ2

(1 + ε2)I(Ŝk)
] = Pr[T ≤ L] = Pr[CovL ≥ Λ2] (3.38)

= Pr[CovLn/L ≥ Λ2n/L] (3.39)

≤ Pr[µ̂L ≥ (1 + ε2)µ]. (3.40)

Apply the Chernoff’s bound in Lem. 2 on the last probability and note that L ≥ (2 +

2
3
ε2) ln( 1

δ′2
) n

I(Ŝk)ε22
, we achieve the following bound,

Pr[µ̂L ≥ (1 + ε2)µ] ≤ δ′2 =
δ2

3 log2 n
. (3.41)
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Thus, we have,

Pr[Ic(Ŝk) ≥ (1 + ε2)I(Ŝk)] ≤
δ2

3 log2 n
, (3.42)

which completes the proof of Lem. 3.

Proof of Lemma 6

Note that there are |R| RR sets to estimate the influence of the optimal solution S∗k .

We use Chernoff-Hoeffding’s inequality (Lem. 2) on the optimal solution, S∗k , with random

variable Z = min{1, |Rj ∩ S∗k |} and µZ = OPTk/n to obtain

Pr[̂I(S∗k) ≤ (1− ε(i)3 )OPTk] ≤ e−
|R|OPTk(ε

(i)
3 )2

2n ≤ δ/(3imax), (3.43)

which completes the proof of Lem. 6.

Proof of Theorem 2

Assume that none of the bad events in Lemmas 4, 5, and 6 happens. By union bound,

this assumption holds with probability at least

1− (δ/3 + δ/(3imax)× 3imax + δ/(3imax)× 3imax) = 1− δ.

We will show that I(Ŝk) ≥ (1− 1/e− ε)OPTk.

If SSA terminates with |R| ≥ Nmax, since the bad event
[
|R| ≥ Nmax and I(Ŝk) < (1− 1/e− ε)

]
(Lem. 4) does not happen, we have I(Ŝk) ≥ (1− 1/e− ε)OPTk.

Otherwise, SSA will stop due to the two stopping conditions (C1), Line 8 Alg. 1, and

(C2), Line 11 Alg. 1.

Proving ε(t)3 ≤ ε3. Since the bad event in Lem. 5 does not happen, we have

Ic(Ŝk) ≤ (1 + ε2)I(Ŝk).
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Thus,

Î(Ŝk) = (1 + ε1)Ic(Ŝk) ≤ (1 + ε1)(1 + ε2)I(Ŝk). (3.44)

From the stopping condition (C1) CovR(Ŝk) ≥ Λ1, we have

Î(Ŝk) =
CovR(Ŝk)n

|R|
≥ Λ1n

|R|
=

(1 + ε1)(1 + ε2)Υ(ε3,
δ

3imax
)n

|R|

⇒ |R| ≥ Λ1n

Î(Ŝk)
=

(1 + ε1)(1 + ε2)Υ(ε3,
δ

3imax
)n

Î(Ŝk)
(3.45)

Combine with Eq. (3.44), we obtain

|R| ≥
(1 + ε1)(1 + ε2)Υ(ε3,

δ
3imax

)n

(1 + ε1)(1 + ε2)I(Ŝk)

=
Υ(ε3,

δ
3imax

)n

I(Ŝk)
≥

Υ(ε3,
δ

3imax
)n

OPTk
.

Substitute the above into the definition of ε(t)3 . We have

ε
(t)
3 =

√
2n ln 3imax

δ

|R|OPTk
≤

√√√√ 2n ln 3imax
δ

Υ(ε3,
δ

3imax
)n

OPTk
OPTk

≤ ε3. (3.46)

Proving the approximation ratio. Combine the above with the assumption that the bad

event in the Lem. 6 does not happen, we have

Î(S∗k) ≥ (1− ε(t)3 )OPTk ≥ (1− ε3)OPTk. (3.47)

Let εa = ε1 + ε2 + ε1ε2. We can rewrite Eq. (3.44) into

Î(Ŝk) ≤ (1 + εa)I(Ŝk).

Follow the same contradiction proof in the Theorem 1 with εa and εb = ε3, we have I(Ŝk) ≥

(1− 1/e− ε)OPTk, where ε = (1− 1
e
) εa+εb

1+εa
= (1− 1

e
) ε1+ε2+ε1ε2+ε3

(1+ε1)(1+ε2)
.

Therefore, Pr[I(Ŝk) ≥ (1− 1/e− ε)OPTk] ≥ 1− δ.
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Proof of Lemma 7

Since |R| ≥ T1 implies

Pr[̂IR(S∗k) ≥ (1− εb)OPTk] ≥ 1− δb.

From the assumption that 1/δ = Ω(lnn) and the fact that imax ≤ 2 log2 n and δb ≤ δ , we

have

Υ(ε0,
δ

3imax
) = (2 + 2/3ε0)

1

ε20
ln

3imax
δ

≤ 3
ε2b
ε20

1

ε2b
(ln 1/δ + ln 3imax) = O(Υ(εb, δb)) (3.48)

The values of ε2, ε3 specified later at the end of Theorem 3 will guarantee that ε2b
ε20

is also a

constant that depends only on εb.

Apply Corollary 2, we have T1 = Ω(Υ(εb, δb)
n

OPTk
). Thus,

TSSA = max{T1, αΥ(ε0,
δ

3imax
)

n

OPTk
}

= O(Υ(εb, δb))
n

OPTk
= O(T1) (3.49)

This yields the proof.

Proof of Theorem 3

SSA stops when either |R| ≥ Nmax or all the following stopping conditions hold

simultaneously.

• CovR(Ŝk) ≥ Λ1 = Θ(Υ(ε3,
δ

3imax
)) (Condition C1)

• Estimate-Inf(G, Ŝk, ε2, δ′2, Tmax) returns an estimation Ic(Ŝk) but not −1. (Line 10,
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Alg. 1).

• Î(Ŝk) ≤ (1 + ε1)Ic(Ŝk) (Condition C2).

Assume |R| ≥ TSSA = O(T1) (Lem. 7). If TSSA ≥ Nmax, then SSA will stop within

O(T1) samples. Otherwise, |R| ≥ TSSA at some iteration i ≤ imax.

Assume that none of the bad events in Lemmas 5, 6, 8, and Eqs. (6.4), and Eq. (6.5)

happen. By union bound, the assumption holds with a probability at least

1− (
δ

3imax
3imax +

δ

3imax
3imax +

δ

3imax
3imax + δa + δb) ≥ 1− 2δ.

Since the bad events in Eqs. (24) and (25) do not happen,

Î(Ŝk) ≤ (1 + εa)I(Ŝk), (3.50)

Î(S∗k) ≥ (1− εb)OPTk, and (3.51)

Similar to the proof of Theorem 1, it follows that

I(Ŝk) ≥ (1− 1/e− ε)OPTk (3.52)

Condition C1: From the (1 − 1/e) approximation guarantee of the Max-Coverage

algorithm, it follows that

CovR(Ŝk) ≥ (1− 1/e)CovR(S∗k)

From Eq. (3.51),

CovR(S∗k) ≥ (1− εb)
OPTk
n
|R|.
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Thus,

CovR(Ŝk) ≥ (1− 1/e)(1− εb)
OPTk
n
|R|

≥ (1− 1/e)(1− ε)OPTk
n

αΥ(ε0,
δ

3imax
)

n

OPTk

≥ (1− 1/e)(1− ε)αΥ(ε3,
δ

3imax
) (since ε0 ≤ ε3)

Select α > (1+ε1)(1+ε2)
(1−1/e)(1−ε) , we have

CovR(Ŝk) > Λ1 = (1 + ε1)(1 + ε2)Υ(ε3,
δ

3imax
) (3.53)

Termination of Estimate-Inf: We show that Estimate-Inf does not return −1. If

Estimate-Inf terminates in line 7, Alg. 3, for some T < Tmax, then nothing left to prove.

Otherwise, we show that when |Rc| = Tmax, then

CovRc(Ŝk) ≥ Λ2 = 1 + (1 + ε2)Υ(ε2,
δ

3imax
)(Line 2, Alg. 3),

and, hence, Estimate-Inf returns an estimate but not −1.

By definition of TSSA,

|R| ≥ TSSA ≥ αΥ(ε0,
δ

3imax
)

n

OPTk
≥ αΥ(ε2,

δ

3imax
)

n

OPTk
.

The last inequality is due to ε0 ≤ ε2. Thus,

Tmax = 2|R|1 + ε2
1− ε2

ε23
ε22
≥ 2αΥ(ε2,

δ

3imax
)
ε23
ε22

n

OPTk
. (3.54)

Select large enough α, says α > ε22
ε23

, we obtain

ε
(i)
2 =

√
(ln 1/δ + ln 3imax)n

Tmax
I(Ŝk) ≤ ε2
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Since the bad event in Lem. 8 does not happen we have

Ic(Ŝk) ≥ (1− ε(i)2 )I(Ŝk)

Since ε(i)2 ≤ ε2, it follows that

Ic(Ŝk) ≥ (1− ε2)I(Ŝk) (3.55)

and Îc(Ŝk) =
CovRc (Ŝk)n

|Rc| , we have

CovRc(Ŝk) ≥ (1− ε2)
I(Ŝk)
n
|Rc| = (1− ε2)

I(Ŝk)
n

Tmax

From Eqs. (3.52) and (3.54),

CovRc(Ŝk) ≥ (1− ε2)
(1− 1

e
− ε)OPTk
n

2αΥ(ε2,
δ

3imax
)
ε23
ε22

n

OPTk

≥ 1 + (1 + ε2)Υ(ε2,
δ

3imax
). (3.56)

Here, we select α > 1 +
ε22
ε23

1
2(1−ε2)(1−1/e−ε) .

Condition C2: We show that the condition C2, Î(Ŝk) ≤ (1 + ε1)Ic(Ŝk), in line 11,

Alg. 1 is satisfied with proper selection of ε1, ε2, ε3. The condition C2 is equivalent to

Î(Ŝk)
Ic(Ŝk)

− 1 ≤ ε1 ⇔
Î(Ŝk)
I(Ŝk)

I(Ŝk)
Ic(Ŝk)

− 1 ≤ ε1

From Eqs. (3.50) and (3.55), we have

Î(Ŝk)
I(Ŝk)

I(Ŝk)
Ic(Ŝk)

− 1 ≤ (1 + εa)
1

1− ε2
− 1 =

εa + ε2
1− ε2

Set ε1 = εa+εb/2
1−εb/2

, ε2 = εb/2, ε3 =
ε2b

2−εb
, the following holds
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
ε1 ∈ (0,∞), ε2, ε3 ∈ (0, 1)

(1− 1
e
) εa+εb

1+εa
= (1− 1

e
) ε1+ε2+ε1ε2+ε3

(1+ε1)(1+ε2)
= ε

Î(Ŝk)

Ic(Ŝk)
− 1 ≤ εa+ε2

1−ε2 = ε1

(3.57)

Thus, SSA with the setting in (3.57) will stop with a probability at least 1 − 2δ if |R| ≥

TSSA = O(N1(εa, εb, δa, δb)).

Constants Justification: The factors that are assumed to be constants within our proofs

for SSA are 1) the factor 3
ε2b
ε0

in Eq. (3.48), 2) α > (1+ε1)(1+ε2)
(1−1/e)(1−ε) before Eq. (3.53), 3) α > ε22

ε23
,

after Eq. (3.54), 4) α > 1 +
ε22
ε23

1
2(1−ε2)(1−1/e−ε) , after Eq. (3.56). With the above setting of

ε1, ε2, ε3, we can verify that those factors are constants that depend only on ε, εa, and εb.

Proof of Lemma 10

tmax = log2(
2Nmax

Υ(ε, δ/3)
)

= log2

2(2− 1

e
)2 (2 + 2

3
ε)n · ln(6/δ)+ln (nk)

kε2

(2 + 2
3
ε) ln(3

δ
) 1
ε2


= log2

(
2(2− 1

e
)2n(ln(6/δ) + ln

(
n
k

)
)

k ln(3/δ)

)

≤ log2

(
2(2− 1

e
)2n(ln(6/δ) + k lnn)

k ln(3/δ)

)
≤ 2 log2 n+ 2 = O(log2 n) (3.58)

The last inequality follows from our assumption 1/δ = Ω(log2 n).
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Proof of Lemma 11

One can verify that f(x) is a strictly decreasing function for x > 0. Moreover, f(0) =

1 and limx→∞ f(x) = 0. Thus, the equation f(x) = δ
3tmax

has an unique solution for

0 < δ < 1 and tmax ≥ 1.

Bound the probability of B(2)
t : Note that ε̂t and the samples generated in Rc

t are inde-

pendent. Thus, we can apply the concentration inequality in Eq. (5):

Pr[Ict(Ŝk) ≥ (1 + ε̂t)I(Ŝk)] ≤ exp

(
−NtI(Ŝk)ε̂2t

(2 + 2
3
ε̂t)n

)
=

δ

3tmax
.

The last equation is due to the definition of ε̂t.

Bound the probability of B(3)
t : Since ε∗t is fixed and independent from the generated

samples, we have

Pr[̂It(S∗k) ≤ (1− ε∗t )OPTk] ≤ exp

(
−|Rt|OPTkε∗t

2

2n

)
= exp

(
−Λ2t−1OPTkε2n

2n2t−1OPTk

)
(3.59)

= exp

(
−

(2 + 2
3
ε) ln(3tmax

δ
) 1
ε2

2t−1OPTkε2n
2(1 + ε/3)n2t−1OPTk

)
≤ exp

(
− ln

3tmax
δ

)
=

δ

3tmax
, (3.60)

which completes the proof of Lemma. 11.

Proof of Lemma 12

Since the bad event B(2)
t doesn’t happen, we have

Î(c)
t (Ŝk) ≤ (1 + ε̂t)I(Ŝk)⇒ CovRct (Ŝk) ≤ (1 + ε̂t)Nt

I(Ŝk)
n

When D-SSA stops with εt ≤ ε, it must satisfy the condition on line 9 of D-SSA

CovRct (Ŝk) ≥ Λ1.
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Thus, we have

(1 + ε̂t)Nt
I(Ŝk)
n
≥ Λ1 = 1 + (1 + ε)

2 + 2/3ε

ε2
ln

3tmax
δ

(3.61)

From the definition of ε̂t, it follows that

Nt =
2 + 2/3ε̂t

ε̂2t
ln

(
3tmax
δ

)
n

I(Ŝk)
(3.62)

Substitute the above into (3.61) and simplify, we obtain:

(1 + ε̂t)
2 + 2/3ε̂t

ε̂2t
ln

(
3tmax
δ

)
(3.63)

≥(1 + ε)
2 + 2/3ε

ε2
ln

3tmax
δ

+ 1 (3.64)

Since the function (1 + x)2+2/3x
x2

is a decreasing function for x > 0, it follows that ε̂t < ε.

Proof of Theorem 5

Assume that none of the bad events B(1), B
(2)
t , B

(3)
t (t = 1..tmax) in Lemmas 9 and 11

happens. Apply union bound, the probability that the assumption holds is at least

1− (δ/3 + (δ/(3tmax) + δ/(3tmax))× tmax) ≥ 1− δ (3.65)

We shall show that the returned Ŝk is a (1 − 1/e − ε)-approximation solution. If D-

SSA stops with |Rt| ≥ Nmax, Ŝk is a (1− 1/e− ε)-approximation solution, since the bad

event B(1) does not happen.

Otherwise, D-SSA stops at some iteration t and εt ≤ ε. We use contradiction method.

Assume that

I(Ŝk) < (1− 1/e− ε)OPTk. (3.66)

The proof will continue in the following order
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(A) I(Ŝk) ≥ (1− 1/e− ε′t)OPTk

where ε′t = (ε1 + ε̂t + ε1ε̂t)(1− 1/e− ε) + (1− 1/e)ε∗t .

(B) ε̂t ≤ ε2 and ε∗t ≤ ε3.

(C) ε′t ≤ εt ≤ ε⇒ I(Ŝk) ≥ (1− 1
e
− ε)OPTk (contradiction).

Proof of (A). Since the bad events B(2)
t and B(3)

t do not happen, we have

Î(c)
t (Ŝk) ≤ (1 + ε̂t)I(Ŝk), and (3.67)

Ît(S∗k) ≤ (1− ε∗t )OPTk. (3.68)

Since ε1 ← Ît(Ŝk)/Ict(Ŝk)− 1, it follows from (3.67) that

Ît(Ŝk) = (1 + ε1)Ict(Ŝk) ≤ (1 + ε1)(1 + ε̂t)I(Ŝk)

Expand the right hand side and apply (3.66), we obtain

I(Ŝk) ≥ Ît(Ŝk)− (ε1 + ε̂t + ε1ε̂t)I(Ŝk)

≥ Ît(Ŝk)− (ε1 + ε̂t + ε1ε̂t)(1− 1/e− ε)OPTk

Since the greedy algorithm in the Max-Coverage guarantees a (1 − 1/e)-approximation,

Ît(Ŝk) ≥ (1− 1/e)Ît(S∗k). Thus

I(Ŝk) ≥ (1− 1/e)Ît(S∗k)− (ε1 + ε̂t + ε1ε̂t)(1− 1/e− ε)OPTk

≥ (1− 1/e)(1− ε∗t )OPTk − (ε1 + ε̂t + ε1ε̂t)(1− 1/e− ε)OPTk

≥ (1− 1/e− ε′t)OPTk,

where ε′t = (ε1 + ε̂t + ε1ε̂t)(1− 1/e− ε) + (1− 1/e)ε∗t .
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Proof of (B). We show that ε̂t ≤ ε2. Since, ε2 = ε
√

n(1+ε)

2t−1Ict (Ŝk)
, we have

1

ε2
=

1

ε22

n

2t−1

1 + ε

Ict(Ŝk)
.

Expand the number of RR sets in iteration t, Nt = 2t−1Λ, and apply the above equality, we

have

Nt = 2t−1(2 + 2/3ε)
1

ε2
ln

3tmax
δ

(3.69)

= 2t−1(2 + 2/3ε)
1

ε22

n

2t−1

1 + ε

Ict(Ŝk)
ln

3tmax
δ

(3.70)

= (2 + 2/3ε)
1

ε22

(1 + ε)n

Ict(Ŝk)
ln

3tmax
δ

(3.71)

On the other hand, according to Eq. (3.62), we also have,

Nt =
2 + 2/3ε̂t

ε̂2t
ln

(
3tmax
δ

)
n

I(Ŝk)
. (3.72)

Thus

(2 + 2/3ε)
1

ε22

1 + ε

Ict(Ŝk)
=

2 + 2/3ε̂t
ε̂2t

1

I(Ŝk)

⇒ ε̂2t
ε22

=
2 + 2/3ε̂t
2 + 2/3ε

Ict(Ŝk)
(1 + ε)I(Ŝk)

≤ 1

The last step is due to Lemma 12, i.e., Ict(Ŝk) ≤ (1+ε)I(Ŝk) and ε̂t ≤ ε. Therefore, ε̂t ≤ ε2.

We show that ε∗t ≤ ε3. According to the definition of ε∗t and ε3, we have

(ε∗t )
2

ε23
=

n

(1 + ε/3)2t−1OPTk
/
n(1 + ε)(1− 1/e− ε)
(1 + ε/3)2t−1Ict(Ŝk)

=
Ict(Ŝk)

OPTk(1 + ε)(1− 1/e− ε)
≤ It(Ŝk)

OPTk(1− 1/e− ε)
≤ 1

The last two steps follow from Lem. 12, Ict(Ŝk) ≤ (1 + ε)I(Ŝk) and the assumption (3.66),

respectively. Thus, ε∗t ≤ ε3.

Proof of (C). Since 1 + ε1 = Ît(Ŝk)/Ict(Ŝk) ≥ 0 and ε2 ≥ ε̂t > 0 and ε3 ≥ ε∗t > 0, we
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have

ε′t = (ε1 + ε̂t + ε1ε̂t)(1− 1/e− ε) + (1− 1/e)ε∗t (3.73)

= (ε1 + ε̂t(1 + ε1))(1− 1/e− ε) + (1− 1/e)ε∗t (3.74)

≤ (ε1 + ε2(1 + ε1))(1− 1/e− ε) + (1− 1/e)ε3 (3.75)

= εt ≤ ε. (3.76)

Proof of Theorem 6

Since T2 ≥ 1, there exist ε∗a, ε
∗
b , δ
∗
a, δ
∗
b that satisfy

N
(1)
min(ε∗a, ε

∗
b , δ
∗
a, δ
∗
b ) = T2, (3.77)

(1− 1

e
)
ε∗a + ε∗b
1 + ε∗a

= ε ≤ 1

4
, (3.78)

δ∗a + δ∗b ≤ δ <
1

log2 n
. (3.79)

Let ε0 = min{ε, ε∗b}, and

TD-SSA = max{T2, αΥ(ε0,
δ

3tmax
)

n

OPTk
}, (3.80)

for some constant α specified later. Note that ε
∗
b

ε
≤ 1/(1− 1/e) (from Eq. 3.78). Similar to

the proof in Lem. 7, we can show that

TD-SSA = O(T2)

under the range conditions.

From Def. 5 of the type-1 minimum threshold, if |R| ≥ TD-SSA ≥ T2 then

Pr[̂I(Ŝk) > (1 + ε∗a)I(Ŝk)] ≤ δ∗a and (3.81)

Pr[̂I(S∗k) < (1− ε∗b)OPTk] ≤ δ∗b . (3.82)
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Similar to the proof of Theorem 1, it follows that

I(Ŝk) ≥ (1− 1/e− ε)OPTk (3.83)

Assume that D-SSA reaches to a round t ≤ tmax with |R| = Λ2t−1 ≥ TD-SSA. If

TD-SSA > Nmax then D-SSA will stop and the proof is complete. Otherwise consider the

bad events that Ict(Ŝk) =
CovRct

(Ŝk)n

|Rct |
is an underestimate of I(Ŝk). Specifically, define for

each t = 1, . . . , tmax the event

B
(4)
t =

(
Îct(Ŝk) < (1− ε̃t)I(Ŝk)

)
,

where ε̃t = ε
√

n

(1+ε/3)2t−1I(Ŝk)
. Similar to the proof of Lem. 11, we can show that

Pr[B
(4)
t ] ≤ δ

3tmax
.

Assume that neither the bad events in Eqs. (6.4) and (6.5) nor the bad eventsB(2)
t , B

(3)
t , B

(4)
t

happen for any t ∈ [1, tmax]. Apply the union bound, this assumption holds with a proba-

bility at least

1− (δ∗a + δ∗b +
δ

3tmax
tmax +

δ

3tmax
tmax +

δ

3tmax
tmax) ≥ 1− 2δ.

Under the above assumption, we will show that the two conditions D1 and D2 are met, and,

thus, D-SSA will stop.

Condition D1: We will prove that CovRct (Ŝk) ≥ Λ1. Since |R| ≥ TD-SSA ≥ αΥ(ε0,
δ

3tmax
) n

OPTk

and ε0 ≤ ε, we have

2t−1 ≥ |R|
Υ(ε, δ

3tmax
)
≥ αΥ(ε0,

δ

3tmax
)

n

OPTk
/Υ(ε,

δ

3tmax
)

≥ α
n

OPTk
ε2

ε20
(3.84)
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Select α > 9/(1− 1/e− ε) and apply Eq. 3.83, we have

ε̃t = ε

√
n

(1 + ε/3)2t−1I(Ŝk)

≤ ε

√
n

(1 + ε/3)α n
OPTk

ε2

ε20
(1− 1/e− ε)OPTk

≤ ε0
3

(3.85)

Since B(4)
t does not happen, we have

Îct(Ŝk) ≥ (1− ε̃t)I(Ŝk). (3.86)

We have

CovRct (Ŝk) =
CovRct (Ŝk)n

|Rc
t |

|Rc
t |
n

= Îct(Ŝk)
|Rc

t |
n

≥ (1− ε̃t)
I(Ŝk)
n

Υ(ε,
δ

3tmax
)2t−1

≥ (1− ε/3)(1− 1/e− ε)OPTk
n

Υ(ε,
δ

3tmax
)α

n

OPTk

≥ 1 + (1 + ε)Υ(ε,
δ

3tmax
) = Λ1,

when selecting α > 1 + 1
(1−1/e−ε)(1−ε/3)

.

Condition D2: εt ≤ ε. The condition D2 is equivalent to

(1− 1/e)
ε1 + ε2 + ε1ε2 + ε3
(1 + ε1)(1 + ε2)

≤ ε = (1− 1/e)
ε∗a + ε∗b
1 + ε∗a

⇔1− 1− ε3
(1 + ε1)(1 + ε2)

≤ 1− 1− ε∗b
1 + ε∗a

⇔1− ε3 ≥
1− ε∗b
1 + ε∗a

(1 + ε1)(1 + ε2) (3.87)

From Eqs. (6.4), (3.86), and (3.85), we have

1 + ε1 =
Î(Ŝk)
I(Ŝk)

I(Ŝk)
Ict(Ŝk)

≤ (1 + ε∗a)
1

1− ε̃t
≤ 1 + ε∗a

1− ε0/3
≤ 1 + ε∗a

1− ε∗b/3

150



www.manaraa.com

Thus, it is sufficient to show that

1− ε3 ≥
1− ε∗b
1 + ε∗a

1 + ε∗a
1− ε∗b/3

(1 + ε2)

⇔(1− ε3)(1− ε∗b/3) ≥ (1− ε∗b)(1 + ε2)

⇔2

3
ε∗b +

ε∗b
3
ε3 + ε∗bε2 ≥ ε2 + ε3 (3.88)

Apply the inequalities 2t−1 ≥ α n
OPTk

, Eq. (3.84), and I(Ŝk) ≥ (1−1/e−ε)OPTk, Eq.

(3.83). For sufficiently large α > 9(1+ε)
(1−1/e−ε)(1−ε/3)

which implies from Eqs. 3.86 and 3.83

that,

Ict(Ŝk) ≥ (1− ε̃t)I(Ŝk) ≥ (1− ε0
3

)I(Ŝk) ≤ (1− ε/3)I(Ŝk) ≤ (1− ε/3)(1− 1/e− ε)OPTk,

(3.89)

then, we have

ε2 = ε

√
n(1 + ε)

2t−1Ict(Ŝk)
≤ ε0/3 ≤ ε∗b/3 (3.90)

ε3 = ε

√
n(1 + ε)(1− 1/e− ε)
(1 + ε/3)2t−1Ict(Ŝk)

≤ ε0/3 ≤ ε∗b/3 (3.91)

Therefore, ε2 + ε3 ≤ 2/3ε∗b with a constant α > 9(1+ε)
(1−1/e−ε)(1−ε/3)

and the inequality (3.88)

holds. This completes the proof.

3.2 Cost-aware Targeted Viral Marketing

Summary of contributions:

• We propose the Cost-aware Targeted Viral Marketing (CTVM) problem that consider

heterogeneous costs and benefits for nodes in the network. Our problem generalizes

other viral marketing problems including TVM, BIM, and the fundamental IM prob-

lems.
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• We propose BCT, an efficient algorithm that returns (1 − 1/
√
e − ε)-approximate

solutions for CTVM with a high probability. The two novel aspects of BCT are an

efficient benefit sampling strategy (Section III) and an efficient stopping rule (Section

IV) that guarantees an asymptotic minimal number of samples. Interestingly, the

time complexity is independent of the edges, making BCT the first sub-linear time

algorithm for CTVM (and IM) in dense graphs, under the LT model.

• We perform extensive experiments on various real networks. BCT, considering both

cost and benefit, provides significantly higher quality solutions than existing meth-

ods, while running multiple times faster than the state-of-the art ones. Further, we

also demonstrate the ability of BCT to identify key influencers in trending topics in

a Twitter dataset of 1.5 billion social relations and 106 million tweets within few

minutes.

A comprehensive comparison of the state-of-the-art algorithms for IM and extensions

is provided in Table 16.

Table 16.: Main results of related methods (k is the number of selected seed nodes, n is the

number of nodes in the graph, m is the number of edges)

Method IM BIM TIM CTVM Model Time Complexity

Naive Greedy [55] X LT+IC O(kmnR), R is the #Monte Carlo simulations
CELF [69] X LT+IC O(kmnR), empirically faster than Naive Greedy
CELF++ [44] X LT+IC O(kmnR), optimized CELF
Simpath [45] X LT O(kmnR), empirically faster than Naive Greedy
LDAG [19] X MIA O(ntiθ + knOθniθ log(n)) (see [19] for details)
Borgs’s method [11] X LT+IC O(kl2(m+ n) log2(n)/ε3) with probability 1/nl

TIM/TIM+ [106] X LT+IC O((k + l)(n+m) log(n)/ε2)

IMM [105] X IC O((k + l)(n+m) log(n)/ε2)

BIM [87] X LT+IC O(n0(n(log(n0) + d) + kn0(1 + d)))

KB-TIM [71] X IC

BCT (this paper) 3 3 3 3 LT+IC

{
O((k + l)n log(n)/ε2 for the LT model
O((k + l)(n+m) log(n)/ε2) for the IC model
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3.2.1 Models and Problem Definitions

In this section, we formally define the CTVM problem and present an overview of the

Reverse Influence Sampling approaches in Borgs et al. [11] and Tang et al. [106, 105]. For

readability, we focus on the Linear Threshold (LT) propagation model [55] and summarize

our similar results for the Independent Cascade (IC) model in Subsection 3.2.4.5.

3.2.1.1 Model and Problem Definition

Let G = (V,E, c, b, w) be a social network with a node set V and a directed edge

set E, with |V | = n and |E| = m. Each node u ∈ V has a selecting cost c(u) ≥ 0

and a benefit b(u) if u is influenced. Each directed edge (u, v) ∈ E is associated with an

influence weight w(u, v) ∈ [0, 1] such that
∑

u∈V w(u, v) ≤ 1.

Our model assumes that all the parameters, c(u), b(u) ∀u ∈ V andw(u, v) ∀(u, v) ∈ E

are given. In fact, these can be estimated depending on the specific context when applying

our method. The cost of node u, c(u), manifests how hard (how much effort) it is to

initially influence the respective person, e.g., convince him to adopt the product. Thus, c(u)

is usually regarded proportionally to some centrality measures, e.g., the degree centrality

[87].

Similarly, the node benefit b(u) refers to the gain of influencing node u and hence is

context-dependent, e.g., in targeted viral marketing, b(u) is assigned 1 if u is in our tar-

geted group and 0 outside [9, 18] or learned from the interest level on the relevant topic,

e.g., number of tweets/retweets with specific keywords on Twitter network. Additionally,

w(u, v) indicates the probability of u influencing v which is widely evaluated as the inter-

action frequency from u to v [55, 106] or learned from action logs [43].

Similarly to influence of a set, he benefit of a seed set S is defined as the expected total
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benefit over all influenced nodes, i.e.,

B(S) =
∑
gvG

Pr[g]
∑

u∈R(g,S)

b(u). (3.92)

We now define our problem as follows.

Definition 12 (Cost-aware Targeted Viral Marketing -CTVM). Given a graphG = (V,E, c, b, w)

and a budget B > 0, find a seed set S ⊂ V with total cost c(S) ≤ B to maximize B(S).

CTVM generalizes the viral marketing problems:

• Influence Maximization (IM): IM is a special case of CTVM with c(u) = 1 and

b(u) = 1 ∀u ∈ V .

• Budgeted Influence Maximization (BIM)[87]: find a seed set with total cost at most

B, that maximizes I(S). That is b(u) = 1 ∀u ∈ V .

• Targeted Viral Marketing (TVM): find a set of k node to maximize the number of

influenced nodes in a targeted set T . This is c(u) = 1 ∀u ∈ V and benefits c(v) = 1

if v ∈ T , and c(w) = 0 otherwise.

Since IM is a special case of CTVM, CTVM inherits the IM’s complexity and hardness

of approximation. Thus CTVM is an NP-hard problem and cannot be approximated within

a factor 1− 1/e+ ε for any ε > 0, unless P = NP .

In Table 24, we summarize the frequently used notations.

3.2.1.2 Summary of the RIS Approach

The major bottle-neck in previous methods for IM [55, 70, 45, 87] is the inefficiency

in estimating the influence spread. To address this, Borgs et al. [11] introduced a novel

approach for IM, called Reverse Influence Sampling (RIS), which is the foundation for

TIM/TIM+ algorithms, the state-of-the-art methods for IM [106].
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Table 17.: Table of Notations

Notation Description

n,m #nodes, #links in G, respectively

I(S), I(S, u) Influence Spread of seed set S ⊆ V and influence of
S on a node v. For v ∈ V , I(v) = I({v})

Γ Sum of all node benefits,
∑

v∈V b(v)

B(S) Benefit of seed set S ⊆ V
B̂(S) B̂(S) = degH(S)

mH
Γ - an estimator of B(S)

OPTk The maximum B(S) for any size-k seed set S

S∗k An optimal size-k seed node, B(S∗k) = OPTk

mH #hyperedges in hypergraphH
degH(S), S ⊆ V #hyperedges incident at some node in S. Also,

degH(v) for v ∈ V
α α =

√
ln(1/δ) + ln 2

β β =
√

(1− 1/e) · (ln
(
n
k

)
+ ln(1/δ) + ln 2)

ε2 ε2 = εβ
((1−1/e)α+β)

ΛL ΛL = (1 + ε2)
(2+2ε2/3)Γ(ln(6/δ)+ln (nk))

ε22

Given a graph G = (V,E, c, b, w), RIS captures the influence landscape of G through

generating a hypergraph H = (V, {E1, E2, . . .}). Each hyperedge Ej ∈ H is a subset of

nodes in V and constructed as follows.

Definition 13 (Random Hyperedge). Given G = (V,E,w), a random hyperedge Ej is

generated from G by 1) selecting a random node v ∈ V 2) generating a sample graph

g v G and 3) returning Ej as the set of nodes that can reach v in g.

Node v in the above definition is called the source of Ej and denoted by src(Ej).

Observe that Ej contains the nodes that can influence its source v. If we generate multiple

random hyperedges, influential nodes will likely appear more often in the hyperedges. Thus

a seed set S that covers most of the hyperedges will likely maximize the influence spread

I(S). Here a a seed set S covers a hyperedge Ej , if S ∩ Ej 6= ∅. This is captured in the
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following lemma in [11].

We denote by mH the number of hyperedges inH.

Lemma 30. [11] Given G = (V,E,w) and a random hyperedge Ej generated from G. For

each seed set S ⊂ V ,

I(S) = nPr[S covers Ej]. (3.93)

RIS framework. Based on the above lemma, the IM problem can be solved using the

following framework.

• Generate multiple random hyperedges from G

• Use the greedy algorithm for the Max-coverage problem [56] to find a seed set S that

covers the maximum number of hyperedges and return S as the solution.

Thresholds for Sufficient Number of Samples. The core issue in applying the above

framework is that: How many hyperedges are sufficient to provide a good approximation

solution? For any ε, δ ∈ (0, 1), Tang et. al. established in [106] a theoretical threshold

θ = (8 + 2ε)n
ln 2/δ + ln

(
n
k

)
ε2OPTk

, (3.94)

and proved that when the number of hyperedges in H reaches θ, the above framework

returns an (1− 1/e− ε)-approximate solution with probability 1− δ. Here OPTk denotes

the maximum influence spread I(S).

Unfortunately, computing OPTk is intractable, thus, TIM/TIM+ in [106] have to ap-

proximate OPTk by a heuristic KPT+ and thus, generate θ OPTk
KPT+ hyperedges, where the

ratio OPTk
KPT+ ≥ 1 is not upper-bounded. That is TIM/TIM+ may generate many times more

hyperedges than needed. In contrast, our BCT algorithm in Section 3.2.3 guarantees that

the number of hyperedges is at most a constant time of the theoretical threshold (with high

probability). Thus, its running time is smaller and more predictable.
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The same group of authors further reduce the threshold θ (Theorem 1 in [105]) to,

θ =
2n · ((1− 1/e) · α + β)2

OPTk · ε2
, (3.95)

where

α =
√

ln(1/δ) + ln 2, and (3.96)

β =
√

(1− 1/e) · (ln
(
n
k

)
+ ln(1/δ) + ln 2). (3.97)

Define

ε2 =
εβ

(1− 1/e)α + β
, (3.98)

then, the threshold θ can be rewritten as follows,

θ =
2nβ2

OPTkε22
=

(2− 2/e)n(ln
(
n
k

)
+ ln(1/δ) + ln 2)

OPTkε22
(3.99)

which is shown in [105] to be 5 times smaller than that of Eq. 3.102. IMM also improves the

estimation of KPT+ to be bounded by some constant times OPTk with high probability.

However, the bound is loose and the estimation process is complicated. On the other hand,

the proposed BCT algorithm in this paper adopts the better threshold in [105] with our

approach in [88] which: 1) avoids a possibly complicated and expensive estimation phase,

2) achieves a better bound on the actual number of samples and 3) solves the more general

CTVM problem (covers IM problem).

Remark. The most intuitive way to extend the RIS framework to cope with benefit

of the nodes is to modify the RIS framework to find a seed set S that covers the maximum

weighted number of hyperedges, where the weight of a hyperedge Ej is the benefit of the

source src(Ej). However following the same analysis in Tang et al. [106, 105], we need

θB = θbmax, (3.100)
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where bmax = max{b(u)|u ∈ V }.

Unfortunately, θB can be as large as n times θ in the worst-case. To see this, we can

(wlog) normalize the node benefit b(u) so that
∑

u∈V b(u) = n. Then note that bmax could

be as large as
∑

u∈V b(u) = n.

3.2.2 Benefit-aware Reverse Influence Sampling

In this section, we show that the well-studied convectional sampling strategy, called

Reverse Influence Sampling (RIS), does not work well in CTVM problem when we have

benefit. In fact, straightforwardly applying RIS to CTVM may lead to an extremely ineffi-

cient algorithm with the number of samplings being up to n times the number needed for

IM task. Therefore, we propose an adapted version of RIS, named Benefit-aware Reverse

Influence Sampling (BSA), for estimating expected benefit.

3.2.2.1 Summary of the RIS method

Borgs et al. [11] introduced a novel approach, called Reverse Influence Sampling

(RIS), to estimate the influence in IC model. RIC generates a hypergraph H consisting of

random hyperedges where each hyperedge Ej is constructed as follows. First, a node u is

chosen uniformly at random and then they travel in the reversed graph to infer which nodes

can influence u. Repeating that process multiple times will provide us with information

on the influence landscape of the network. In H, the degree of a set S ∈ V is defined as

degH(S) = |{E|E ∩S 6= ∅}|. Intuitively, if node u has higher influence to other people than

node v, with high probability, node u will appear more often in a random set of hyperedges

than node v. The other direction is also very inherent. The following Lemma (see [11] for

details) capture this intuition
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Lemma 31. For each subset of nodes S ∈ V ,

I(S) = nPr[E ∩ S 6= ∅] (3.101)

where E is a random hyperedge.

Thus, the problem of estimating the influence of a subset S (I(S)) is transformed into

the problem of estimating Pr[E ∩ S 6= ∅]. Based on this result, the framework of using RIS

for IM problem consists of two steps:

• Generate a sufficiently large random hyperedges using RIS to capture the influence

landscape in the network.

• Find a seed set that covers the maximum number of hyperedges by using greedy

approach on hyperedges.

In the first step, with the number of hyperedges

θ = (8 + 2ε)
n(lnn+ ln

(
n
k

)
+ ln 2)

OPTkε2
, (3.102)

TIM/TIM+ [106] return a (1− 1/e− ε)-approximate solution with probability 1/n.

We, now, determine the number of samples required to approximate accurately a fixed

subset S ∈ V with high probability. If we define i.i.d. random variables X1, ..., XT having

mean value E [Xi] = µ = Pr[E ∩ S 6= ∅] = I(S)
n

, then an estimation of I(S) is given by

Î(S) = nP̂r[E ∩ S 6= ∅] =

∑T
i=1Xi

T
n =

degH(S)

T
n. (3.103)

where hypergraph H contains T hyperedges. However, how large T have to be in order to

approximate Pr[E ∩ S 6= ∅] accurately. The following Lemmas provide us the number of

samples needed to bound approximation error.

Lemma 32. Let X1, ..., XT be i.i.d. random variables with E [Xi] = µ. For any fixed
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T > 0,

Pr[µ̂ ≥ (1 + ε)µ] ≤ e
−Tµε2

2c

and

Pr[µ̂ ≤ (1− ε)µ] ≤ e
−Tµε2

2c .

where µ̂ =
∑T
i=1Xi
T

.

Lemma 33. Given 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1, if we have

T = 2c ln(
2

δ
)

1

ε2µ
(3.104)

i.i.d. random variables X1, ..., XT with µXi = µ then

Pr[|µ̂− µ| ≥ εµ] ≥ 1− δ (3.105)

The probability in 3.105 is called (ε, δ)-approximation. Lemma 41 is a tight version of

Chernoff-Hoeffding theorem and Lemma 33 is the Generalized Zero-One Estimator Theo-

rem (See [26] for both). Applying Lemma 41 to the approximation of Pr[E ∩ S 6= ∅], we

find that

T = 2c ln(23/δ)
1

ε2µXi
= 2c ln(

2

δ
)

n

ε2I(S)
. (3.106)

is the sufficient number of samples to guarantee

Pr[|̂I(S)− I(S)| ≤ εI(S)] ≥ 1− δ (3.107)

Thus, the most straightforward way of using RIS on CTVM problem, where node u

has a benefit b(u), is to define i.i.d. random variablesX ′1, ..., X
′
n with meanE[X ′i] = B(S)

n
=∑

v∈V I(S,v)b(v)

n
and a sample corresponds to 1(S∩Ev 6=∅)b(v) where v is random. However, this

intuitively adapted algorithms requires the number of samples up to n times larger than that

for IM problem as shown by the following Lemma with the proof in the Appendix.

160



www.manaraa.com

Lemma 34. The naive algorithm using RIS sampling for CTVM problem requires

T ′ = 2c ln(2/δ)
nbmax
ε2B(S)

(3.108)

samples to estimate expected benefit of a set S.

Comparing T in 3.106 and T ′ in 3.108: 1) In case of Influence Maximization problem

where all nodes have the same benefit of 1, T = T ′; 2) In the worst case where bmax = n

and B(S) = O(I(S)), then the adapted TIM+ to CTVM requires n times that number for

IM problem.

3.2.2.2 Efficient Sampling Strategy for CTVM

Due to the inefficiency of RIS in CTVM, we propose an efficient adapted version

of RIS, called Benefit-aware Reverse Influence Sampling (BSA), for estimating expected

benefit of a seed set. The BSA procedure to generate a random hyperedge Ej ⊆ V under

LT model is summarized in Algorithm 17. A procedure for IC model can be similarly

constructed. The great deal of difference of BSA is where we choose the starting node

proportional to node benefit as opposed to choosing uniformly at random in RIS. That is

the probability of choosing node u is P (u) = b(u)∑
v∈V b(v)

= b(u)
Γ

. After choosing a starting

node u, we attempt to select an in-neighbor v of u, i.e. (v, u) is an edge of G, according

to the edge weights. Then we “move” to v and repeat, i.e. to continue the process with

v replaced by u. The procedure stops when we encounter a previously visited vertex or

no edge is selected. The hyperedge is then returned as the set of nodes visited along the

process.

The key insight into why random hyperedges generated via BSA can capture the ben-

efit landscape is stated in the following Lemma.
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Algorithm 14: Benefit-aware Reverse Influence Sampling under LT model (BSA-

LT)
Input: Weighted graph G = (V,E,w)

Output: A random hyperedge Ej ⊆ V .

1: Ej ← ∅

2: Pick a node u with probability b(u)
Γ

.

3: Repeat

4: Add u to Ej

5: Attempt to select an edge (v, u) using live-edge model

6: if edge (v, u) is selected then Set u← v.

7: Until (u ∈ Ej) OR (no edge is selected)

8: Return Ej

Lemma 35. Given a fixed seed set S ⊆ V , for a random hyperedge E ,

Pr[E ∩ S 6= ∅] =
B(S)

Γ

Proof.

B(S) =
∑
u∈V

Pr[ u is reachable from a node in S]b(u)

=
∑
u∈V

Pr[∃v ∈ S such that v ∈ E(u)]b(u)

= Γ
∑
u∈V

Pr[∃v ∈ S such that v ∈ E(u)]
b(u)

Γ

= Γ Pr[∃v ∈ S such that v ∈ E ]

= Γ Pr[S ∩ E 6= ∅] (3.109)

The transition from the third to forth equality follows from the distribution of choosing

node u as a starting node of BSA. We select u with probability P (u) = b(u)
Γ

, hence, the
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forth equality contains the expected probability taken over the node benefit distribution.

Now, we analyze the number of samples needed to (ε, δ)-approximate a random set S.

First, define variable X = 1(S∩E6=∅) where E is a random hyperedge with the mean value

µ = Pr[S ∩ E ] = B(S)
Γ

(followed by Eq. 3.129). Thus, applying Lemma 33 gives

T = 2c
Γ ln 2/δ

ε2B(S)
. (3.110)

This number of samples is asymptotically optimal based on the results in [26]. By com-

paring Eq. 3.110 with Eq. 3.108, we see that algorithm using BSA requires up to n times

fewer samples than the straightforward strategy.

3.2.3 BCT Approximation Algorithm

In this section, we present BCT - a scalable approximation algorithm for CTVM.

BCT combines two novel techniques: BSA (Alg. 15), a sampling strategy to estimate the

benefit and a powerful stopping condition to smartly detect when the sufficient number of

hyperedges is reached.

Algorithm 15: BSA - Benefit Sampling Alg. for LT model
Input: Weighted graph G = (V,E,w).
Output: A random hyperedge Ej ⊆ V .
1: Ej ← ∅;
2: Pick a node u with probability b(u)

Γ ;
3: repeat
4: Add u to Ej ;
5: Attempt to select an edge (v, u) using live-edge model;
6: if edge (v, u) is selected then Set u← v;
7: until (u ∈ Ej) OR (no edge is selected);
8: return Ej ;

3.2.3.1 Efficient Benefit Sampling Algorithm - BSA

Due to the inefficiency of RIS when applying to CTVM problem, we propose a gen-

eralized version of RIS, called Benefit Sampling Algorithm - BSA, for estimating benefit
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B(S). The BSA for generating a random hyperedge Ej ⊆ V under LT model is summa-

rized in Algorithm 15. A similar BSA procedure for IC model can be derived by changing

the generating of live-edges in the Lines 5 and 6 of Algorithm 15 to the equivalent live-

edge model for IC [55]. The great deal of difference of BSA from RIS is that it chooses

the source node proportional to benefit of each node as opposed to choosing uniformly

at random in RIS. That is the probability of choosing node u is P (u) = b(u)/Γ with

Γ =
∑

v∈V b(v). After choosing a starting node u, it attempts to select an in-neighbor v of

u according to the LT model and make (v, u) a live edge. Then it “moves” to v and repeat

the process. The procedure stops when we encounter a previously visited vertex or no edge

is selected. The hyperedge is the set of nodes visited along the process.

Note that the selection of a source node with the probability proportional to the benefit

can be done in O(1) after an O(n) preprocessing using the Alias method [109]. Similarly,

the selection of the live edge according to the influence weight can also be done in O(1). In

contrast, in the IC model [11], it takes a time θ(d(v)) at a node v to generate all live edges

pointing to v. This key difference makes the generating hyperedges in the LT model more

efficient than that in the IC.

The key insight into why random hyperedges generated via BSA can capture the ben-

efit landscape is stated in the following Lemma.

Lemma 36. Given a fixed set S ⊆ V , for a random hyperedge E ,

Pr
gvG,u∈V

[Ej ∩ S 6= ∅] =
B(S)

Γ
. (3.111)

The above Lemma on computing benefit is similar to Lemma 30 on influence except

having the normalizing constant Γ in the place of n in Lemma 30. Thus, the RIS framework

can be applied and a similar result to Theorem 1 in [105] on the threshold of hyperedges

can be derived as follows.
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Corollary 3. Let

θB(ε, δ) =
(2− 2/e)Γ(ln

(
n
k

)
+ ln(1/δ) + ln 2)

OPTkε22
. (3.112)

For any fixed T ≥ θB, the RIS framework with T random hyperedges, generated by BSA,

will return an (1− 1/e− ε)-approximate solution for the CTVM problem.

3.2.3.2 Solving Budgeted Max-Coverage Problem

Finding a candidate seed set Ŝk that appears most frequently in the hyperedges is a

special version of the Budgeted Max-Coverage problem [57]. Each hyperedge represents

an element in the Budgeted Max-Coverage problem and each node v ∈ V is associated

with a subset of hyperedges that contains v. The cost to select a subset is given by the cost

to select the corresponding node into the seed set.

We use the greedy algorithm, denoted by Budgeted-Max-Coverage, in [57] to find a

maximum covering set within the budgetB is applied. This procedure considers two candi-

dates and chooses the one with higher coverage. The first one is taken from greedy strategy

which sequentially selects nodes with highest efficiency, i.e. ratio between marginal cover-

age gain and its cost of selecting,

∀i = 1..k, vi = arg max
v∈V \Si−1

∆(Si−1, v), Si = Si−1 ∪ {vi}

where ∆(Si−1, v) = Cov(Si−1∪{v})−Cov(Si−1)
c(v)

and Cov(Si−1) is the number of hyperedges

incident to at least a node in Si−1. The second solution is just a node with highest coverage

within the budget. [57] proved that this procedure returns a (1− 1/
√
e)-approximate cover

if the nodes’ cost are non-uniform, or, (1− 1/e)-approximate cover, otherwise.

Note that we can improve the approximation ratio to (1 − 1/e) for the case of non-

uniform costs, however, the time complexity (Ω(n4)) becomes impractical.
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Algorithm 16: BCT Algorithm
Input: Graph G = (V,E, b, c, w), budget B > 0, and two precision parameters ε, δ ∈ (0, 1).
Output: Ŝk - An (1− 1/e− ε)-approximate seed set.
1: ΛL = (1 + ε2)2+2ε2/3

2−2/e θB(ε, δ/3)OPTk
(Or ΛL = ΛcostL in Eq. 3.121 for non-uniform costs;)

2: Nt = ΛL;H ← (V, E = ∅); t← 0;
3: repeat
4: for j = 1 to Nt − |E| do
5: Generate Ej ←BSA(G); Add Ej to E ;
6: end for
7: t← t+ 1;Nt = 2Nt−1;
8: Ŝk = Budgeted-Max-Coverage(H, B);
9: until degH(Ŝk) ≥ ΛL;
10: return Ŝk;

3.2.3.3 BCT - The Main Algorithm

BCT algorithm for the CTVM problem is presented in Algorithm 16. The algorithm

uses BSA (Algorithm 15) to generate hyperedges and Budgeted-Max-Coverage [88] to

find a candidate seed set Ŝk following the RIS framework.

BCT keeps generating hyperedges by BSA sampling (Algorithm 15) until the degree

of the seed set selected by Budgeted-Max-Coverage exceeds a threshold ΛL (the stopping

condition). Specifically, at iteration 1 ≤ t ≤ O(log n), it consider the hypergraph H that

consists of the first 2t−1ΛL hyperedges. That is the number of samples (aka hyperedges)

are double after each iteration. In each iteration, Budgeted-Max-Coverage algorithm is

called to select a seed set Ŝk within the budget B and stops the algorithm if the degree of

Ŝk exceeds ΛL, degH(Ŝk) ≥ ΛL. Otherwise, it advances to the next iteration.

3.2.4 Approximation and Complexity Analysis

We prove that BCT will stop within O(θB) samples (aka hyperedges) and return an

(1− 1/e− ε)-approximate solution.

Note that BCT can be used with any threshold for the sufficient number of samples

(not only the one in [105]). That is if a better threshold θ′ < θ exists, we can use θ′ in BCT
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to guarantee BCT will stop within O(θ′) samples whp.

3.2.4.1 Approximation Guarantee for uniform cost CTVM

Assume the case of uniform node cost. The proof consists of two steps: 1) the “stop-

ping time” (aka the number of hyperedges) mH concentrates on an interval [T ∗, cT ∗] for

some fixed c > 4 (Lemma 37 and 39); and 2) for that interval the candidate seed set Ŝk is

a (1− 1/e− ε)-approximate solution whp (Lemma 38).

Given a seed set S ⊂ V , denote by B̂T (S) and degT (S) the estimate of B(S) and the

degree of S of the hypergraph with the first T random hyperedges, respectively.

Lemma 37. Let T ∗ = 2+2ε2/3
2−2/e

θB(ε, 2δ2) = ΛLΓ
(1+ε2)OPTk

hyperedges, where ε2 is defined in

Eq. 3.98 and δ2 = δ/6. We have,

Pr[mH ≤ T ∗] ≤ δ2. (3.113)

Let t0 =
⌈
log2

T ∗

ΛL

⌉
+1 be the smallest iteration such that 2t0−1ΛL ≥ T ∗. The above lemma

is equivalent to,

Pr[t < t0] ≤ δ2. (3.114)

For iterations t ≥ t0, we now show that the candidate solution Ŝk will be an (1− 1
e
−ε)-

approximate solution whp.
Lemma 38. For any iteration t ≥ t0, the candidate solution Ŝk satisfies that

Pr[B(Ŝk) ≤ (1− 1/e− ε)OPTk] ≤ (2δ2)2t−t0 . (3.115)

Proof. This is a direct consequence of Corollary 3. We can verify that the number of

samples in iteration t is

|E| = 2t−1ΛL ≥ 2t−t0θB(ε, 2δ2) ≥ θB(ε, (2δ2)2t−t0 ). (3.116)

This yields the proof.
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The upper-bound on the number of hyperedges generated by BCT is stated in the

following lemma.

Lemma 39. For ε ∈ (0, 1− 1/e) and c = 4

⌈
1+ε2

1−1/e− ε+ε2
2

⌉
,

Pr[mH ≥ cT ∗] ≤ δ2. (3.117)

Finally, we prove the overall approximation guarantee of BCT in the following Theo-

rem 24.

Theorem 13. Given 0 < ε < 1− 1/e, 0 < δ < 1,

Pr[mH = O(θB(ε, δ))and B(Ŝk) ≥ (1− 1

e
− ε)OPTk] ≥ 1− δ.

Proof. Assume that none of the following “bad” events in Lemmas 37, 39 and 38 happens.

(b1) Pr[mH ≤ T ∗] ≤ δ2

(b2) Pr[mH ≥ cT ∗] ≤ δ2

(b3) ∀t ≥ t0,Pr[B(Ŝk) ≤ (1− 1/e− ε)OPTk] ≤ (2δ2)2t−t0

That is the following inequalities

(i1) mH ≥ T ∗,

(i2) mH ≤ cT ∗, and

(i3) ∀t ≥ t0,B(Ŝk) ≥ (1− 1/e− ε)OPTk

hold together with probability at least

1− [δ2 + δ2 + (2δ2 + (2δ2)2 + (2δ2)4 + . . . )]

≥1− (2δ2 +
2δ2

1− 2δ2

) ≥ 1− δ

168



www.manaraa.com

The last one is due to δ2 = δ/6 ≤ 1/6.

From the above inequalities, we will have T ∗ ≤ mH ≤ cT ∗. And the algorithm will

stop in one of (at most) log2 c + 1 iterations, starting from t0. Further, no matterwhat

the iteration that the algorithm will stop at, the candidate seed set Ŝk satisfies B(Ŝk) ≥

(1− 1/e− ε)OPTk. Since T ∗ = O(θB(ε, δ),

Pr[mH = O(θB(ε, δ))and B(Ŝk) ≥ (1− 1

e
− ε)OPTk] ≥ 1− δ.

That completes the proofs.

3.2.4.2 Time Complexity

The overall time complexity of BCT comprises of two components: 1) for generating

hyperedges and 2) for running Greedy algorithm for Max-Coverage. The result is stated in

the following theorem and the proof is presented in our conference paper [88].

Theorem 14. BCT has an expected running time for uniform cost CTVM problem under

LT model of O(
log((nk)/δ)

ε22
n).

Remark. From Theorem 14, under the LT model, the time complexity does not de-

pend on the number of edges in the original graph, hence, uniform-cost BCT has a sub-

linear time complexity in dense graphs.

3.2.4.3 Sample Complexity and Comparison to IMM

Since the number of samples (hyperedges) decides the complexity of BCT, IMM [105]

and any algorithm using sampling techniques, we compare number of hyperedges gener-

ated by BCT with the current state-of-the-art IMM. We can prove a tighter version of

Lemma 39 as stated in the lemma below.

Lemma 40. Let δ2 ∈ (0, 1), 0 < ε < (1− 1/e), BCT returns Ŝk,

degH(Ŝk) ≤ 2
(1 + ε2) · (2 + 2ε2/3) · log(6

(
n
k

)
/δ2)

ε22
, (3.118)
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due to doubling hyperedges every round and,

Pr[mH ≥
2

(1− ε2)(1− 1/e− ε)
T ∗] ≤ δ2 = δ/6. (3.119)

In comparison with IMM [105], BCT theoretically generates at least 3/2 times fewer

samples than IMM. IMM approaches the problem by trying to achieve an estimate KPT+

of OPTk such that KPT+ ≤ OPTk and then deriving the sufficient number of samples by

replacing OPTk in T ∗ of Lemma 37 by KPT+ and the constant (2 + 2ε2/3) by (2− 2/e)

to get T ∗2 . Thus, Lemma 9 in [105] states the number of samples generated by IMM, |R|,

as follows,

Pr
[
|R| ≤ 3

(1 + ε′)2

1− 1/e
max{T ∗2 , T ′2}

]
≥ 1− δ, (3.120)

where ε′ =
√

2ε and

T ′2 =
(2 + 2

3
ε′)(log

(
n
k

)
+ log(1/δ) + log log2(n)) · n
ε′2OPTk

.

Comparing Eqs. 3.120 and 3.119, we see that max{T ∗2 , T ′2} ≥ T ∗ and 31+
√

2ε
1−1/e

>

2 1
(1−ε2)(1−1/e−ε) (assume that ε is small). Thus, the number of samples generated by BCT

is always less than that of IMM and the ratio between the two is approximately 3/2 (when

ε ≤
√

2− 1 > 0.4 which is usually the case). In fact, our experiments show that BCT is up

to 10x faster than IMM proving the practical efficiency.

3.2.4.4 Approximation Algorithm for Arbitrary Cost CTVM

We analyze the CTVM algorithm under the heterogeneous selecting costs. First ob-

serve that in this case, the candidate seed sets may have different sizes since the total cost

of each set must be less that the given budget B. However, we can obtain an upper-bound

kmax = max{k : ∃S ⊂ V, |S| = k, c(S) ≤ B} by iteratively selecting the smallest cost

nodes until reaching the budget B. We then guarantee that all subsets of size up to kmax
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are well approximated. The number of such seed sets is subsequently bounded above by∑
k≤kmax

(
n
k

)
≤ nkmax . Thus, the computation of α and β at the step of calculating ε1 are

updated to ε′1,

ε′2 =
ε
√

(1− 1/e)kmax log(n · 2/δ)
(1− 1/e)

√
log(2/δ) +

√
(1− 1/e)kmax log(n · 2/δ)

Thus, ΛL is also updated to Λ2
L as follows,

Λcost
L =

(1 + ε′2) · (2 + 2ε′2/3) · log(6
(
n
k

)
/δ)

ε
′2
2

. (3.121)

In addition, the Weighted-Max-Coverage algorithm used in CTVM only guarantees

(1− 1/
√
e) approximate solutions, as shown in [56]. Putting these modifications together,

we have the following Theorem 15. The proofs are similar to that of Theorem 24 and 14

and is omitted for clarity.

Theorem 15. Given a budget B, 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1, BCT for arbitrary cost CTVM

problem returns a solution Ŝ that,

Pr[B(Ŝ) ≥ (1− 1/
√
e− ε)OPT ] ≥ 1− δ, (3.122)

and runs in time O(
log((nk)/δ)

ε
′2
2

n).

3.2.4.5 Extension to IC model

When applying BCT for IC model, the only change is in the BSA procedure to gener-

ate hyperedges following the IC model, as originally presented in [11]. Thus, our results for

LT model translate directly over for IC model. Specifically, the following theorem states

the solution guarantee and time complexity of BCT to the uniform cost version.

Theorem 16. Given a budget B, 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1, BCT for uniform cost CTVM

problem returns Ŝ where
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Pr[B(Ŝ) ≥ (1− 1/e− ε)OPT ] ≥ 1− δ, (3.123)

and runs in time O(
log((nk)/δ)

ε22
(m+ n)).

Similar to Theorem 17, we obtain the performance guarantee for the arbitrary cost

version under IC model in the following theorem.

Theorem 17. Given a budget B, 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1, for arbitrary cost CTVM

problem, BCT returns a solution Ŝ,

Pr[B(Ŝ) ≥ (1− 1/
√
e− ε)OPT ] ≥ 1− δ, (3.124)

and runs in time O(
log((nk)/δ)

ε
′2
2

(m+ n)).

3.2.5 Experiments

In this section, we experimentally evaluate and compare the performance of BCT to

other influence maximization methods on three aspects: the solution quality, the scalability,

and the applicability of BCT on various network datasets including our case study on a

billion-scale dataset with both links and content.

3.2.5.1 Experimental Settings

All the experiments are carried on a Linux machine with a 2.2Ghz Xeon 8 core pro-

cessor and 64GB of RAM.

Algorithms compared: We choose three groups of methods to test on:

(1) Designed for IM task, including the top four state-of-the-art algorithms, i.e., IMM

[105], TIM/TIM+ [106], CELF++ [44] and SIMPATH [45].

(2) Designed for BIM task, namely, BIM algorithm [87].
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(3) Our method BCT for the general CTVM problem.

In the first experiment, we will compare between these groups of methods on CTVM

problem and the second experiment reports results on IM task. Our last set of experi-

ments are on Twitter - a billion-scale network where we first test the scalability of BCT

against IMM and TIM+ (the current most scalable methods for solving IM problem) on

IM task. Next, we acquire a Twitter’s tweet dataset and extract two groups of users who

tweet/retweet the same topic and run our BCT algorithm to find the users who attract the

most interested people in the same topics.

Table 18.: Datasets’ Statistical Summary

Dataset #Nodes #Edges Type Avg. degree

NetHEPT [19] 15K 59K undirected 4.1
NetPHY [19] 37K 181K undirected 13.4
Enron [60] 37K 184K undirected 5.0
Epinions[19] 132K 841K directed 13.4
DBLP [19] 655K 2M undirected 6.1
Twitter [65] 41.7M 1.5G directed 70.5

Datasets: For a comprehensive experimental purpose, we select a diverse set of 6

datasets with sizes from thousands to millions in various disciplines: NetHEPT, NetPHY,

DBLP are citation networks, Email-Enron is communication network, Twitter and Epin-

ions are online social networks. The description summary of those datasets is provided in

Table 18. Parameter Settings: Computing the edge weights. Following the conventional

computation as in [106, 20, 45, 87], the weight of the edge (u, v) is calculated as follows,

w(u, v) = 1/din(v) (3.125)

where din(v) denotes the in-degree of node v.

Computing the node costs. Intuitively, the more famous one is, the more difficult it is to
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convince that person. Hence, we assign the cost of a node proportional to the out-degree:

c(u) = ndout(u)/
∑
v∈V

dout(v) (3.126)

where dout(v) is the out-degree of node v.

Computing the node benefits. In the first experiment, we choose a random p = 20% of all

the nodes to be the target set and assign benefit 1 to all of them while in case studies, the

benefit is learned from a separate dataset.

In all the experiments, we keep ε = 0.1 and δ = 1/n as a general setting or directly

mentioned otherwise. For the other parameters, we take the recommended values in the

corresponding papers if available.
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Fig. 20.: Comparisons on CTVM problem. The whole column indicates influence of the

selected seeds while the darker colored portion reflects the benefit gained from that set.
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Fig. 21.: Comparison on IM problem under the LT model.
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Fig. 22.: Comparison on IM problem under the IC model.

3.2.5.2 Experimental results

We carry three experiments on both CTVM and IM tasks to compare the performance

of BCT with other state-of-the-art methods. In the first experiments, we compare three

groups of algorithms, namely, IM based methods, BIM and BCT on CTVM problem. We

choose four algorithms in the category of IM methods: CELF++, SIMPATH, TIM/TIM+

and IMM, which are well known algorithms for IM. The results are presented in Fig. 20. We

conduct the second and third experiments on the classical IM task with different datasets

and various k values. The results are shown in Table 19 and Fig. 21 for LT model and

Fig. 22 for IC model.

Table 19.: Comparison between different methods on IM problem and various datasets

(with ε = 0.1, k = 50, δ = 1
n

).

Method Spread of Influence Running Time (s)
Epin. Enron DBLP Epin. Enron DBLP

BCT 16280 16726 108400 0.19 0.14 0.58
IMM 16290 16716 108430 2 1.5 3.5
TIM++ 16293 16732 108343 6 3 12
TIM+ 16306 16749 107807 8 4 17
Simpath 16291 16729 103331 23 18 136
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3.2.5.3 Comparison of solution quality on CTVM

Fig. 20 shows the results of the three groups of methods (CELF++ with 10000 sam-

pling times represents the first group) for solving CTVM problem on NetHEPT and Net-

PHY networks. We see that BCT outperforms the other methods by a large margin on

CTVM problem. With the same amount of budget, CTVM returns a solution which is up

to order of magnitudes better than that of BIM and IM based methods in terms of benefit.

Because IM algorithms only desire to maximize the influence and thus usually aim at the

most influential nodes, unfortunately, those nodes are very expensive or have high cost. As

a consequence, when nodes have heterogeneous cost, IM methods suffer severely in terms

of both influence and benefit. On the other hand, BIM optimizes cost and influence while

ignoring benefit of influencing nodes that causes BIM to select cheaper nodes with high

influence. Hence, the seed sets returned by BIM have the highest influence among all but

relatively low benefit. Even though BCT returns seed set with lower value of influence than

BIM, the majority of the influenced nodes are our target and thus achieves the most benefit.

3.2.5.4 Comparison of solution quality on IM

In the previous experiment, one can argue that CTVM performs better because it fo-

cuses on optimizing the benefit and the others do not. This experiment compares BCT

to the other algorithms with IM problem where the node costs are all 1 and so as the node

benefits on various datasets. Fig. 21 and Fig. 22 display the spread of influence and running

time on NetHEPT and NetPHY under the LT and IC models respectively. Table 19 shows

the cross-dataset view of the results when we fix a setting and run on multiple data.

Fig. 21, Fig. 22 and Table 19 reveal that all the tested algorithms including BCT and

the top methods on IM problem achieve the same level of performance in terms of spread of

influence. Specifically, they all expose the phenomenon that the first few seed nodes (≤ 25)
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can influence a large portion of the networks and after that point, the gains of adding more

seeds are marginal. The phenomenon is explained by the submodularity property of the

influence function.

3.2.5.5 Comparison of running time

The experimental results in Fig. 21, Fig. 22 and Table 19 also confirm our theoretical

establishment in Section 3.2.4 that BCT for uniform cost CTVM requires much less number

of hyperedges needed by IMM, TIM and TIM+. As such, the running time of BCT in all

the experiments are significantly lower than the other methods. In average, BCT is up to 10

and 50 times faster IMM and TIM/TIM+, respectively. Since both Simpath and CELF++

require intensive graph simulation, these methods have very poor performance compared to

BCT, TIM/TIM+ and IMM which apply advanced techniques to approximate the influence

landscape. That is illustrated by the distinct separation of two groups.

3.2.5.6 Robustness Testing

In this experiment, we test the robustness of our algorithm against noise possibly in-

curred in computing the edge weights in the diffusion model. We take NetHEPT with

the previously calculated edge weights as our ‘ground-truth’ network and then add various

noises, e.g., in different levels and noise models to it. In particular, we consider Gaus-

sian and Uniform noise models where the added noise follows either a Gaussian or Uni-

form distribution respectively. To account for noise levels, we select 4 different values

0.2, 0.4, 0.6, 0.8, which correspond to 20% to 80% noise since the edge weight is between

0 and 1, and assign them to be the variance of the distribution (larger variance signifies

noisier data) while the mean values are set at 0. Thus, each pair of noise level and model,

we have a specific distribution of noise and use that for generating noise. For each such

pair, we generate 30 noisy networks and run BCT to find 50 seed nodes and then take the
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average over 30 runs. We then use the original HetHEPT without noise to recompute the

influence and quantify the effect of noise.

Table 20.: Robustness results (% to true value).

Uniform Noise Gaussian Noise

ε True 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0.1 1588 99.7 99.2 98.6 97.9 98.9 98.0 96.7 95.7
0.2 1504 99.9 99.7 99.2 98.8 100.1 99.7 98.3 95.8
0.4 1312 99.9 99.5 98.4 98.8 100.9 99.4 98.7 98.2

The experimental results under the IC model are depicted in Table 20 where the ‘true

value’ refers to the results run on the original network. Interestingly, BCT performs very

well under the noises introduced to the network. For example, with 80% noise, the quality

of BCT only degrades by less than 2% with Uniform noise and 5% with Gaussian case in

average. In some rare cases on network with 20% Gaussian noise, we see the qualities of

over 100% compared to true values. This happens when ε is large implying the provided

solution guarantee 1−1/e−ε is small. Thus, the seed set found on small noisy network may

get better than that on the original. Moreover, different from the Uniform case, Gaussian

noise is highly concentrated at 0.

3.2.6 Twitter: A billion-scale social network

In this subsection, we design two case studies on Twitter network: one is to compare

the scalability of BCT with IMM and TIM++ - the fastest existing methods and the another

is using BCT to find a set of users who have highest benefit with respect to a particular

topic in Twitter.
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Fig. 23.: BCT, IMM and TIM++ on Twitter

3.2.6.1 Compare BCT against IMM and TIM+

Figure 23 shows the results of running BCT and TIM+ on Twitter network dataset

using both LT and IC models with k ranging from 1 to 100. Twitter has 1.5 billion edges

and all the other methods, except BCT, IMM and TIM+, fail to process it within a day

in our experiments. The results, here, are consistent with the other results in the previous

experiments. Regardless of the values of k, in LT model, BCT is always several times

faster than IMM or TIM+ and in IC model, this ratio is in several orders of magnitude since

influence in IC model is much larger and, thus, harder for IMM or TIM+ to have a close

estimate of the optimality which decides the complexity of these algorithms.

We also measure the memory consumed by these two algorithms and observe that, in

average, BCT requires around 20GB but IMM and TIM+ always need more than 30GB.

This is a reasonable since in addition the memory for the original graph, BCT needs much

less number of hyperedges than that generated by IMM or TIM+.

3.2.6.2 A Case Study on Twitter network.

We study the twitter network using BCT by extracting some trending topics from the

retrieved tweet dataset and find who are most influential in those topics based on Twitter
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Table 21.: Topics, related keywords

Topic Keywords #Users

1
bill clinton, iran, north korea,

president obama, obama 997K

2
senator ted kenedy, oprah,
kayne west, marvel, jackass 507K
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Fig. 24.: Case Study on real-world Twitter

network. First we choose two most popular topics with related keywords (Table 21) as

reported in [65]. Based on the list of keywords, we use a Twitter’s tweet dataset to ex-

tract a list of users who mentioned the keywords in their posts and the number of those

tweets/retweets. The number of tweets/retweets reveals the interest of the user on the topic,

thus, we consider this as the benefit of that node. Lastly, we run BCT on Twitter with the

extracted parameters.

Fig. 24a shows the benefit percentage, which is computed as the percentage of benefit

gained by the selected seed set over the total benefit. We see that apparently the very

first chosen nodes have high benefit and it continues increasing later but with much lower

rate. Looking into the first 5 Twitters chosen by the algorithm, they are users with only

few thousands of followers (unlike Katy Perry or President Obama who got more than
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50 millions followers) but highly active posters in the corresponding topic. For example,

on the first political topic, the first selected users is a Canadian poster, who is originally

from Iran and has about 4000 followers and but generates more than 210K posts on the

movements of governments in the US and Iran.

On Twitter we test different schemes of assigning node costs, i.e., proportional to a

concave function. We employ square and fourth roots, denoted by c1/2(u) and c1/4(u)

respectively, w.r.t. out-degree and run BCT on each case. The results are presented in

Figure 24b. We see that BCT is relatively robust with different concave cost functions,

e.g., 70% of nodes returned in case of c1/2(u) overlaps with that of c(u)-linear cost, and

60% overlap for the pair c1/4(u) to c1/2(u). Another interesting result is that the number

of selected seeds gets smaller when the cost function gets farther from linear, i.e., c(u) →

c1/2(u) and c1/2(u)→ c1/4(u).

3.2.7 Martingale View on Benefit Estimation

To recognize the connection between the expected benefit and martingales, we give a

general definition as follows,

Definition 14 (Martingale). A sequence of random variables Y1, Y2, . . . is a martingale if

and only if E [Yi] ≤ +∞ and E [Yi|Y1, Y2, . . . , Yi−1] = Yi−1.

For a random hyperedge Ej , we define random variable,

Xj =

 1 if S ∩ Ej 6= ∅

0 otherwise.
(3.127)

Thus, we have a sequence of random variables X1, X2, . . . corresponding to the series of

random hyperedges. Then, we define the second sequence of random variables based on
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X1, X2, . . . as follows,

Zj =

j∑
i=1

(Xi − B(S)/Γ) (3.128)

The sequence Z1, Z2, . . . has the following properties [105]:

(1) E [Zj] = 0,∀j ≥ 1 (since E [Zi] = B(S)/Γ,∀i ≥ 1)

(2) E [Zj|Z1, Z2, . . . , Zj−1] = Zj−1

Thus, the two conditions (1) and (2) hold and make the sequence Z1, Z2, . . . a martin-

gale. Hence the following inequalities for martingales follow from [105].

Lemma 41. For any fixed T > 0 and ε > 0, we have

Pr[µ̂ ≥ (1 + ε)µ] ≤ e
−Tµε2

2+2
3 ε ,

and

Pr[µ̂ ≤ (1− ε)µ] ≤ e
−Tµε2

2 .

where µ̂ =
∑T
i=1Xi
T

is an estimate of µ = B(S)/Γ.
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3.2.8 Proofs of lemmas and theorems

3.2.8.1 Proof of Lemma 51

We start with the definition of B(S) in Eq. 3.92 and prove the equivalent formula

B(S) = Γ PrgvG,u∈V [Ej ∩ S 6= ∅].

B(S) =
∑
u∈V

Pr
gvG

[u ∈ R(g, S)]b(u)

=
∑
u∈V

Pr
gvG

[∃v ∈ S such that v ∈ Ej(u)]b(u)

= Γ
∑
u∈V

Pr
gvG

[∃v ∈ S such that v ∈ Ej(u)]
b(u)

Γ

= Γ Pr
gvG,u∈V

[∃v ∈ S such that v ∈ Ej]

= Γ Pr
gvG,u∈V

[S ∩ Ej 6= ∅]. (3.129)

The transition from the third to forth equality follows from the distribution of choosing

node u as a starting node of BSA. Since we select u with probability P (u) = b(u)/Γ, the

forth equality contains the expected probability taken over the benefit distribution. That

completes our proof.
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3.2.8.2 Proof of Lemma 37

Consider the first T ∗ =
(2+2ε2/3)·Γ·ln

(
(nk)/δ2

)
OPTk·ε22

hyperedges, for any set Sk of k nodes, by

Chernoff’s bound (Lemma 41),

Pr[B̂T ∗(Sk) ≥ B(Sk) + ε2OPTk]

= Pr[B̂T ∗(Sk) ≥ (1 + ε2
OPTk
B(Sk)

)B(Sk)]

≤ exp

(
−
T ∗B(Sk)(ε2

OPTk
B(Sk)

)2

(2 + 2
3
ε2

OPTk
B(Sk)

)Γ

)

= exp

(
−

(2 + 2ε2/3)Γ ln(
(
n
k

)
/δ2)B(Sk)ε

2
2OPT2

k

OPT2
kε

2
2B2(Sk)(2 + 2

3
OPTk
B(Sk)

)Γ

)

= exp

(
−

(2 + 2ε2/3) ln(
(
n
k

)
/δ2)

2B(Sk)
OPTk

+ 2ε2/3

)
≤ δ2/

(
n
k

)
. (3.130)

Moreover,

Pr[B̂T ∗(Sk) ≥ B(Sk) + ε2OPTk]

≥Pr[B̂T ∗(Sk) ≥ OPTk + ε2OPTk]

= Pr[degT ∗(Sk)Γ/T
∗ ≥ (1 + ε2)OPTk]

= Pr[degT ∗(Sk) ≥ (1 + ε2)OPTkT ∗/Γ]

= Pr[degT ∗(Sk) ≥ ΛL] (3.131)

Combine Eqs. 3.130 and 3.131, we obtain,

Pr[degT ∗(Sk) ≥ ΛL] ≤ δ2/
(
n
k

)
(3.132)

Apply union bound over all seed sets Sk of size k, we have,

Pr[∃Sk, degT ∗(Sk) ≥ ΛL] ≤ δ2 (3.133)

which means that with T ∗ hyperedges, the probability of having a seed set Sk of k nodes

184



www.manaraa.com

with degT ∗(Sk) ≥ ΛL is less than δ2. INote that BCT stops only when the returned seed

set Ŝk has degH ≥ ΛL that implies having a seed set with the coverage at least ΛL. Thus,

the number of hyperedges generated by BCT is at least T ∗ with probability of 1− δ2.

3.2.8.3 Proof of Lemma 39

Since c > 1, with cT ∗ hyperedges, we have,

Pr[B̂cT ∗(Sk) ≤ B(Sk)−
ε2
2

OPTk]

= Pr[B̂cT ∗(Sk) ≤ (1− ε2
2

OPTk
B(Sk)

)B(Sk)]

≤ exp

(
−

cT ∗B(Sk)(
ε2
2

OPTk
B(Sk)

)2

2Γ

)

= exp

(
−

c(2 + 2ε2/3)Γ · ln
((
n
k

)
/δ2

)
B(Sk)ε

2
2OPT2

k

2ΓB2(Sk)OPTkε224

)

= exp

(
−

c(2 + 2ε2/3) ln(
(
n
k

)
/δ2)OPTk

2B(Sk)4

)
≤
(
δ2/
(
n
k

))c/4

Thus, since there are at most
(
n
k

)
such sets of size k,

Pr[∃Sk, B̂cT ∗(Sk) ≤ B(Sk)−
ε2
2

OPTk] ≤ δ
c/4
2 (3.134)

Moreover, since c ≥ 8, thus, cT ∗ > 8T ∗, with cT ∗ hyperedges, applying Corollary 3

with parameter settings ε = ε/2 and δ = (2δ2)c/4,

Pr[B̂cT ∗(Ŝk) ≤ (1− 1/e− ε/2)OPTk] ≤ (2δ2)c/4 (3.135)

From Eqs. 3.134 and 3.135, consider two events:

(e1) ∀Sk, B̂cT ∗(Sk) ≥ B(Sk)− ε2
2

OPTk

(e2) B̂cT ∗(Ŝk) ≥ (1− 1/e− ε/2)OPTk

which together happen with probability of at least 1−δc/4
2 −(2δ2)c/4 ≥ 1− 1

6
δ2− 4

6
δ2 = 1−δ2
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since c > 1 and δ2 = δ/6 ≤ 1/6. In that case, we further derive,

B̂cT ∗(Ŝk) ≥ B(Ŝk)−
ε2
2

OPTk

⇔ BcT ∗(Ŝk) ≥ (1− 1/e− ε

2
)OPTk −

ε2
2

OPTk

⇔ degcT ∗(Ŝk)
Γ

cT ∗
≥ (1− 1/e− ε

2
− ε2

2
)OPTk

⇔ degcT ∗(Ŝk) ≥
(1− 1/e− ε

2
− ε2

2
)OPTkcT ∗

Γ

⇔ degcT ∗(Ŝk) ≥
(1− 1/e− ε

2
− ε2

2
)

(1 + ε2)
cΛL (3.136)

Now, since we set c = 4
⌈

1+ε2
1−1/e−ε−ε2

⌉
> 4, then,

degcT ∗(Ŝk) > 4ΛL (3.137)

with probability 1− δ2. Note that c exists due to the condition on ε that ε < (1− 1/e) and

ε2 < ε.

In other words, with a probability of at least 1 − δ2, with cT ∗ hyperedges where c =

4
⌈

1+ε2
(1−1/e− ε

2
− ε2

2
)

⌉
, the stopping condition in BCT will be satisfied. Thus, BCT generates at

most cT ∗ hyperedges with probability at least 1− δ2, or

Pr[mH ≤ cT ∗] ≥ 1− δ2. (3.138)

3.3 Social Influence Spectrum with Guarantees

3.3.1 Problem Definition

Definition 15 (Influence Spectrum (IS)). Given two integers klower and kupper, for all k =

klower, . . . , kupper, find Sk of size k that maximizes I(Sk).

When the context is clear, we also use IS to indicate the influence values (I(klower), . . . , I(kupper)).

Complexity and Hardness. For each value of k ∈ {klower, . . . , kupper}, we have an
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IM problem that finds the k-size seed set Sk of maximum influence. Thus, IS is at least

as hard as IM. Since IM is an NP-hard problem, it follows that IS is also an NP-hard

problem. More than that, we cannot approximate IM with a factor (1 − 1/e + ε) unless

NP ⊆ DTIME(nlog logn) [55], we also obtain the same result for IS problem.

Greedy algorithm for IM. The Greedy approach in [55], referred to as the Greedy,

starts with an empty seed set S = ∅, and iteratively adds to S a node u that leads to the

largest increase in the objective, i.e.,

u = arg max
v/∈S

(I(S ∪ {v})− I(S))

To estimate I(S), we first generate a sample graph G of G using the live-edge model:

select for each node v ∈ G at most one of its incoming edges at random, such that the

edge (u, v) is selected with probability w(u, v), and no edge is selected with probability

1−
∑

uw(u, v). We then measure the number of nodes reachable from S in G, say RG(S).

After generating “enough” sample graphs G (typically ns = 10, 000 samples [55]), we can

take the average of RG(S) as an estimation of I(S).

To a select a node u, we may have to perform up to n estimations of I(.) that require

generating ns samples each. Thus, Greedy with its O(k × ns ×mn) time complexity is

computationally prohibitive for networks with millions of nodes. Later the heuristics CELF

and CELF++ [46] are proposed to scale up the computation. Nevertheless, the greedy

approach do not scale well for large networks.

3.3.1.1 IS through Greedy approach.

Let {u1, u2, . . . , un} be the order that nodes are added to S. Knowing this order will

give an approximate solution {Sklower , ..., Skupper} for IS in which Sk = {u1, u2, u3, ..., uk}

the k-prefix of the order. However, this approach has two main drawbacks

1. No error bounds are given on the influence of the seed sets I(Sklower), ..., I(Skupper)
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(with respect to the number of samples nS).

2. The approach is not scalable for large networks due to its high time complexity.

We will address these drawbacks in the following sections.

Table 22.: Table of Notations

Notation Description

klower, kupper lower and upper numbers of selected seed nodes

OPT k The maximum I(Sk) for any size-k node set Sk

Sk∗ An optimal size-k seed set, i.e., I(Sk∗) = OPT k

c Sampling constant c = 2(e− 2) ≈
√

2

Mk,M Mk =
(
n
k

)
+ 2,M =

∑kupper
k=klower

Mk

Υ Υ = 8c(1− 1
2e)

2(log 1
δ + logM) 1

ε2

(Note that logM < kupper log
n(kupper−klower+1)

kupper
)

Λ Λ = (1 + eε
2e−1)Υ

3.3.2 Simultaneous High-confident Estimation of Influence Spectrum

In this section, we investigate the problem of obtaining high-confident and bounded-

error estimation of influence of multiple seed sets simultaneously. This is critical for know-

ing whether or not we have sufficient samples to provide the guarantees on the solution of

IS. Given a node order S = {v1, . . . , vn}, e.g., like the one obtained through the greedy

approach, we wish to compute the influence of all k-prefixes with klower ≤ k ≤ kupper, i.e.,

to calculate IS I(Sk),∀k = klower, . . . , kupper where Sk = {v1, . . . , vk}. Computing exact

IS is intractable as computing the influence of a single seed set is already #P-hard [55].

Even approximating these influence values with an ε-error is difficult with existing

methods. Previous works [55, 19] have to resort to estimation by simulating the influence

cascades from the selected seeds many times and take the average of those simulated influ-

ence. This approach has the complexity of O((m+n)R) where R is the number of simula-
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tions. However, there are no rigorous methods to determineR andR is chosen using ad hoc

method of experiment-based tuning. Recent methods [11, 106, 105] use Reverse Influence

Sampling (RIS) to give high-confidence estimations for the influence of a single seed set.

However, these methods are still not scalable for large ranges of k ∈ [klower, kupper].

To this end, we propose an efficient algorithm to give high-confidence estimation for

multiple seed sets at scale. In fact, the time needed to estimate for multiple seed sets is the

same with the time to evaluate the influence for a single seed set.

Our algorithm is built on top of the reverse influence sampling technique [11]. The RIS

procedure to generate a random RR set Rj ⊆ V in LT model is summarized in Algorithm

17. After choosing a starting node u randomly, we attempt to select an in-neighbor v of u,

i.e. (v, u) is an edge of G, according to the edge weights. Then we “move” to v and repeat,

i.e. to continue the process with v replaced by u. The procedure stops when we encounter

a previously visited vertex or no edge is selected. The RR set is then returned as the set of

nodes visited along the process.

Algorithm 17: RIS-LT: Reverse Influence Sampling in LT model
Input: Weighted graph G = (V,E,w)
Output: A random RR set Rj ⊆ V
Rj ← ∅
Pick a node v uniformly at random.
repeat

Add v to Rj
Attempt to select an edge (u, v) using live-edge model
if edge (u, v) is selected then

Set v ← u
end

until (v ∈ Rj) OR (no edge is selected);
Return Rj

The key insight into why random RR sets generated via RIS can capture the influence

landscape is stated in the following lemma.
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Lemma 42. Given a fixed seed set S ⊆ V , for a random RR set Rj ,

Pr[Rj ∩ S 6= ∅] =
I(S)

n

The proof is similar to that for IC model in [11] and is omitted.

Thus we can apply Monte-Carlo method to estimate the influence of a given seed set

S, i.e., to generate enough RR sets (aka samples) and compute the frequency that the RR

sets intersect with S. Even better, we only need to generate the RR sets once, and can

reuse the RR sets to approximate the influence of as many seed sets as we want. This is

a huge advantage comparing to the traditional Greedy [55], in which we have to perform

an excessive number of BFS to estimate nodes’ influence. All we need to figure out is the

number of sample times (i.e. number of RR sets) needed to estimate nodes’ influence at a

desired level of accuracy.

3.3.2.1 Number of Samples (RR sets)

This section focuses on the number of samples (RR sets) needed to achieve a pre-

determined performance guarantee. As the number of samples directly decides the running

time, it is critical to minimize the number of samples (preserving the same performance

guarantees). For example, Borgs et al.’s method requires at least 48 (m+n) logn
ε3OPTk

RR sets to

find a (1 − 1/e − ε)-approximate of IM with probability at least 1 − 1/nl, while Tang

et al.’s [106] needs only (8 + ε) k(m+n)
ε2OPTk

RR sets to provide the same guarantees. Here

OPT k = max|S|=k,S⊆V {I(S)}, the maximum influence of any size-k seed set. Hence, the

Tang et al.’s is asymptotically 1
ε

log n times faster than the Borgs et al.’s.

Let Z be a random variable distributed in [0, 1] with mean E[Z] = µ and variance σ2
Z .

Let Z1, Z2, . . . , ZT be independently and identically distributed (i.i.d.) realizations of Z. A

Monte Carlo estimator of µZ is,
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µ̃ =
1

T

T∑
i=1

Zi. (3.139)

µ̃ is said to be an (ε, δ)-approximation of µ, for 0 < ε, δ ≤ 1, if

Pr[|µ̃− µ| ≤ εµ] ≥ 1− δ. (3.140)

Let ρ(ε) = max{σ2, εµ}. The Generalized Zero-One Estimator Theorem in [26]

proves that if

T = 2c ln
2

δ

ρ(ε)

ε2µ2
(3.141)

then µ̃ = 1
T

∑T
i=1 Zi is an (ε, δ)-approximation of µ. Moreover, the number of sam-

pling time is (asymptotically) optimal (by a constant factor) [26]. Additionally from [26],

the second way of achieving an (ε, δ)-approximation of µ is based on the condition that,

T∑
i=1

Zi ≥ 1 + (1 + ε)2c ln(
2

δ
)

1

ε2
, (3.142)

and the necessary number of samples to achieve this condition is also asymptotically opti-

mal.

In this paper, we are interested in the random variable Z with realizations

Zj = min{|S ∩Rj|, 1}, (3.143)

where S is a fixed seed set and Rj is a random RR set generated by Algorithm 17. From

Lemma 51, Z is a random variable with mean µZ = I(S)/n and variance σ2
Z = (1−µZ)µZ .

A major obstacle in using Eq. (3.141) to derive the optimal number of samples is

that we do not know σ2
Z and µZ , the quantity we are trying to estimate. Let Sk∗ =

arg max|S|=k,S⊆V {I(S)}, and OPT k = I(Sk∗). If we can come up with a close bound
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on OPT k, we will know the necessary number of RR sets to capture the influence land-

scape. After that, IM and IS can be reduced to the classic Max-Coverage problem [107]

as shown in [11, 106].

Thus, the key to the efficiency of the two previous studies in [11, 106] are the meth-

ods to probe and estimate the value of OPT k. With the better probing and estimat-

ing techniques, TIM and TIM+ in [11] reduce the time-complexity in [106] by a factor

O(1/ε log n), making the first scalable method for IM in billion-size networks. However,

the number of samples in [106] is still far from optimal, especially for large seed sets. As a

consequence, the two algorithms scale poorly with large number of seeds.

3.3.2.2 Efficient Influence Spectrum Estimation

Algorithm 18: Efficient Influence Spectrum Validation Algorithm (EIVA)
Input: Weighted graph G, a seed set S = {v1, v2, . . . , vn}, klower,≤ kupper that

1 ≤ klower ≤ kupper ≤ n and ε, δ ∈ (0, 1)
Output: (ε, δ)-approximation of I(Ŝk),∀k = klower, . . . , kupper
ΛL ← 1 + 2c(1 + ε)(ln 2

δ + ln(kupper − klower + 1)) 1
e2

T ← 0,Covk ← 0, ∀k = 1, . . . , n
repeat

Generate random RR set Rj ← RIS − LT (G)
t = arg mini{vi ∈ Rj}
Covt ← Covt + 1
T ← T + 1

until
∑klower

i=1 Covi ≥ ΛL;
Îklower = Covklower · n/T
for k = (klower + 1) : kupper do

Îk ← Îk−1 + Covk · n/T
end
Return Î = {Îk|k = klower, . . . , kupper}

In this section, we provide a fast and memory-efficient algorithm, called EIVA, to

estimate the influence spectrum in arbitrarily good accuracy with high probability. Given

an ordered set S = {v1, . . . , vn} and two integers 1 ≤ klower ≤ kupper ≤ n, we want to

compute all I(Sk), ∀k = klower, . . . , kupper where Sk = {v1, v2, . . . , vk}. Here we assume
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S = {v1, . . . , vn} is fixed and given as a set of seed nodes which can be the output of

an IS algorithm. Denote Î(Sk) the estimated value of I(Sk) returned by EIVA algorithm.

EIVA guarantees that Î(Sk),∀k = klower, . . . , kupper are within (1 − ε) the actual values

with probability at least 1− δ where ε, δ ∈ (0, 1) are arbitrarily small values chosen by the

users.

Specifically, EIVA, shown in Algorithm 18, repeatedly generates a RR set Rj in each

step. It then looks for the smallest index t that vt ∈ Rj . Observe that all seed sets Sk, k ≥ t

will cover RR set Rj . Instead of increasing the value of all Covk, k ≥ t, EIVA only

increases Covk by one. Finally, the values of Covk will be aggregated at the end, lines

10 and 11. This smart update strategy reduces the worst-case time-complexity per RR set

from O(n) to O(1). Hence, we will be able to compute all the influence of the seed sets

much faster.

Lemma 43. EIVA (Algorithm 18) computes (ε, δ)-approximate for the influences of all seed

sets in time O(ε−2(ln 2
δ

+ ln(kupper − klower + 1))(m + n)) and only an θ(n) additional

space (excluding the space to store the graph).

Proof. The complexity analysis is similar to that of LISA algorithm which will be presented

in Subsection 3.3.3.2. The space complexity is followed directly from the fact that EIVA

does not store RR sets but only need a single array to store the values of Covk, k = 1, . . . , n,

thus its space-complexity is θ(n). Here we prove the (1 − ε)-approximation factor. First,

due to the condition in line 8, we have,

kupper∑
i=1

Covi ≥
kupper−1∑
i=1

Covi ≥ · · · ≥
klower∑
i=1

Covi ≥ ΛL (3.144)

Thus, for any k = klower, . . . , kupper, based also on the condition of achieving an (ε, δ)-
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approximation of I(Sk) for a single set Sk in Eq. 3.142, we obtain,

Pr[|̂I(Sk)− I(Sk)| ≤ εI(Sk)] ≤ 1− δ

kupper − klower + 1
(3.145)

Taking the union bound of the above inequality over all values of k from klower to kupper

(there are kupper − klower + 1 such values) gives,

Pr[|̂I(Sk)− I(Sk)| ≤ εI(Sk), ∀k = klower, . . . , kupper] ≤ 1− δ (3.146)

which proves the (ε, δ)-approximate for the influences of all seed sets Sk where k =

klower, . . . , kupper and completes the proof.

Comparing with the complexity of naive algorithm for computing IS by cascade sim-

ulation, we see that EIVA saves a factor of R kupper−klower+1

ln(kupper−klower+1)
. More importantly, EIVA

guarantees an (ε, δ)-approximation for the returned IS estimation.

3.3.3 LISA Approximation Algorithm for Identify Multiple Seed Sets

In this section, we propose LISA approximation algorithm that returns a (1−1/e−ε)-

approximate IS with probability at least (1− δ) for any constant ε, δ ∈ (0, 1).

Our algorithm, named LISA, is presented in Algorithm 19. It consists of a main loop

of iterations. In each iteration, LISA 1) doubles the number of RR sets (except for the

first iteration where it generates Nt = Λ RR sets) using RIS (Algorithm 17) and 2) solves

an instance of Max-Coverage using a greedy approach (Algorithm 20). The algorithm

terminates when the stopping condition in line 9 is satisfied.

Borgs et al. [11] generates RR sets until a pre-defined number of edges explored by

the algorithm and only provide a low successful probability 2/3. While the authors suggest

that their algorithm can be repeated multiple times to boost up the success probability, this

approach leads to a very inefficient implementation. Tang et al. [106] estimates OPT k via
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Algorithm 19: LISA Influence Spectrum Algorithm
Input: Precision ε ∈ (0, 1), δ ∈ (0, 1), weighted graph G and min/max seed set sizes

klower, kupper
Output: {Ŝk, k = klower, . . . , kupper} and their influences

{Î(Ŝk), k = klower, . . . , kupper}.
Λ = (1 + eε

2e−1)Υ
Nt = Λ
R ← ∅
repeat

Generate Nt RR sets by RIS-LT and add toR
Nt = mR
Ŝ = Max-Coverage(R, kupper)
Ŝk = {Ŝt|t = 1, . . . , k},∀k = klower, . . . , kupper

until CovR(Ŝklower) ≥ Λ;

Compute Î(Ŝk) = CovR(Ŝk)·n
mR

,∀k = klower, . . . , kupper

Return {Ŝk, k = klower, . . . , kupper} and {Î(Ŝk), k = klower, . . . , kupper}

Algorithm 20: Max-Coverage
Input: CollectionR and maximum number of seeds kupper.
Output: Seed set Ŝ
S = ∅
for i = 1 : kupper do

v̂ ← arg maxv∈V (CovR(Ŝ ∪ {v})− CovR(Ŝ))
Add v̂ to Ŝ

end
Return Ŝ
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the average cost of RIS, called EPT k. However, their approach still requires generating

as many as k times more RR sets than necessary. Differently, we propose a novel stopping

rule: we stop generating RR sets once the degrees of all seed sets in the collectionR reach

their corresponding constants Λ. Here, the degree of a node in the collection R is the

number of RR sets that contain the node. Later we show our stopping rule guarantees a

‘rich’ enough collectionR to estimate nodes’ influence and small enough RR sets to make

an efficient algorithm.

Our algorithm is easy to implement and requires no parameters rather than ε and δ. In

practice, it scales very well with billion-size networks and large seed sets. It proves to be

the fastest algorithm known for IM while maintaining superior solution quality at the same

time.

3.3.3.1 Approximation Guarantees

In this subsection, we will prove the approximation factor of LISA to be (1− 1
e
− ε).

In our context of IS, the (1 − 1
e
− ε)-approximation guarantee means that for all sizes

k = klower, . . . , kupper, I(Ŝk) ≥ (1− 1
e
− ε)I(Sk∗) where Ŝk = {Ŝt|t = 1, . . . , k} and Sk∗

is an optimal seed set of size k with the optimal influence of OPT k. We say that an IS

algorithm returns an (1− 1
e
− ε)-approximate solution Ŝ with probability at least (1− δ) if,

Pr[I(Ŝk) ≥ (1− 1

e
− ε)I(Sk∗),∀k = klower, . . . , kupper] ≥ 1− δ (3.147)

In other words, it is equivalent to that,

Pr[I(Ŝk) < (1− 1

e
− ε)I(Sk∗),∃k = klower, . . . , kupper] < δ (3.148)

The following will prove that LISA returns a (1 − 1/e − ε)-approximate solution Ŝ

with probability at least (1− δ) where ε and δ are parameters in Alg. 19 (Theorem 47).
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Roadmap. To prove the Eq. 3.148, we will intermediately prove a stronger inequality,

kupper∑
k=klower

Pr[I(Ŝk) < (1− 1

e
− ε)I(Sk∗)] < δ (3.149)

which implies Eq. 3.148 due to the inequality between probability of a union of events

and sum of probabilities of individual events. More specifically, we will show that LISA’s

stopping condition (Line 9 of Alg. 19) guarantees the kth term in the sum to be bounded

by δMk

M where Mk =
(
n
k

)
+ 2,M =

∑kupper
k=klower

Mk and thus, the Eq. 3.149 follows.

In order to prove the approximation guarantee of each seed set Ŝk, we show that LISA

generates at least T k = nΥ
OPTk

RR sets with a high probability in Lemma 45, i.e., our

stopping condition. Thereafter, we prove that T k RR sets are sufficient to guarantee that

LISA returns an (1−1/e−ε)-approximate solution of the seed size k with a high probability

(Lemma 46). Combining these results gives us the approximation guarantee of LISA for a

seed set Ŝk in Theorem 47. Thus, the IS guarantee of LISA follows in Theorem 18.

We first present the following results that will be used in our proofs. For a node set S

and a RR set Rj , recall the random sample Zj defined in Eq. 3.143,

Zj = min{|S ∩Rj|, 1}, (3.150)

Thus, the series of RR sets in H corresponds to a sequence of samples of Zj , denoted

by {X1, X1, . . . }. Intuitively, since the RR sets are generated independently, the resulted

sample sequence of Zj should also be independent and identically distributed in [0, 1].

However, similar to the Stopping Rule Algorithm in [26] that LISA creates a dependency

on the samples by stopping the algorithm when some condition is satisfied. LISA jumps to

the next round when CovH(Ŝklower) ≥ Λ or,
∑|H|

i=1 Zi ≥ Λ where Zj corresponds to Ŝklower ,

is not met and hence, whether we generate more samples depending on the current set of

RR sets. Interestingly, similar to the case of Stopping Rule Algorithm in [26], the sequence
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{Z1, Z2, . . . } forms a martingle and the following results follow from [26]:

Let Z1, Z2, ... samples according to Z random variable in the interval [0, 1] with mean

µZ and variance σ2
Z form a martingale and µ̂Z = 1

T

∑T
i=1 Zi be an estimate of µZ , for any

fixed T > 0, 0 ≥ ε ≥ 1,

Pr[µ̂Z ≥ (1 + ε)µZ ] ≤ e
−TµZε

2

2c (3.151)

and,

Pr[µ̂Z ≤ (1− ε)µZ ] ≤ e
−TµZε

2

2c . (3.152)

To prove the bound on the number of RR sets generated by LISA (Lemma 45), we first

need to show the following result which relates the number of RR sets to the approximation

quality of any set of a specific size.

Lemma 44. Given a size-i set Sk, if the collectionR has at least T k = nΥ
OPTk

RR sets, then

Pr[I(Sk) ≤ Î(Sk)− εe

2e− 1
OPT k] ≤ δ

M
(3.153)

whereM =
∑kupper

k=klower
Mk and Mk =

(
n
k

)
+ 2.

Proof. Denote µ̂k = Î(Sk)
n

= CovR(Sk)
mR

which is an estimation of µk = I(Sk)
n

and µ∗k = OPTk

n
.

The inequality Eq. 3.153 is equivalent to,

Pr[µk ≤ µ̂k −
εe

2e− 1
µ∗k] ≤

δ

M

⇔Pr[µ̂k ≥ µk +
εe

2e− 1

µ∗k
µk
µk] ≤

δ

M
(3.154)

Applying Eq. 4.25 to the left-hand side of the above inequality gives,
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Pr[µ̂k ≥ µk +
εe

2e− 1

µ∗k
µk
µk] ≤ e

−mRµke
2ε2µ∗2k

2c(2e−1)2µ2
k ≤ e

− Tkµkε
2µ∗2k

8c(1−1/2e)2µ2
k (3.155)

The last inequality is due to the condition of having at least T k samples generated by LISA.

Thus, by replacing T k with the corresponding definition and noticing that µ
∗
k

µk
≥ 1,

Pr[µ̂k ≥ µk +
εe

2e− 1

µ∗k
µk
µk] ≤ e

− Tkµkε
2µ∗2k

8c(1−1/2e)2µ2
k ≤ δ

M
(3.156)

which completes the proof of Lemma 44.

Based on Lemma 51, we prove the following bounds on the number of RR sets gener-

ated by our LISA algorithm regarding a specific class of seed sets with size k.

Lemma 45 (Stopping condition). For each k = klower, . . . , kupper, if there exists a set Sk

with |Sk| = k such that CovR(Sk) ≥ Λ, then,

Pr[mR ≤ T k] <
δ

M
(3.157)

Proof. Let define XSk = min{|Sk ∩ Ej|, 1} to be a random variable corresponding to set

Sk, then,

Pr[mR ≤ T k] = Pr
[ mR∑
j=1

XSk ≤
Tk∑
j=1

XSk

]
= Pr

[
CovmR(Sk) ≤ CovTk(S

k)
]
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Due to our condition that CovmR(Sk) ≥ Λ = (1 + eε
2e−1

)Υ,

Pr[mR ≤ T k] ≤ Pr
[
(1 +

εe

2e− 1
)Υ ≤ CovTk(S

k)
]

≤ Pr
[
(1 +

εe

2e− 1
)Υ

n

T k
≤ CovTk(S

k)
n

T k

]
≤ Pr

[
(1 +

εe

2e− 1
)OPT k ≤ ÎTk(Sk)

]
≤ Pr

[
I(Sk) +

εe

2e− 1
OPT k ≤ ÎTk(Sk)

]
≤ δ

M
(3.158)

The third line is due to the definition of T k that T k = nΥ
OPTk

and the estimation Î(Sk) =

CovTk(S
k) n
Tk

when there are T k RR sets. The last inequality is followed from Eq. 3.153

of Lemma 44 when having T k RR sets in the collectionR.

Based on Lemma 45, if we can find a set Sk such that CovR(Sk) ≥ Λ, then with a

very high probability, the number of generated RR sets is at least T k. Next, we show the

second component of our proof that T k RR sets are sufficient to guarantee that the size-k

seed set Ŝk returned by LISA is good.

Lemma 46. For any k ∈ {klower, . . . , kupper}, if the number of samples (RR sets)mR ≥ T k,

LISA returns the corresponding seed set Ŝk with

Pr[I(Ŝk) ≤ (1− 1/e− ε)OPT k] ≤ δ(Mk − 1)

M
. (3.159)

Proof. Similarly to the proof of Lemma 45, we obtain the following inequality,

Pr[̂I(Sk∗) ≤ OPT k − εe

2e− 1
OPT k] ≤ δ

M
(3.160)

Combine Eq. 3.153, Eq. 3.160 and apply union bound over all possible sets of size k

on Eq. 3.153 and the corresponding optimal solution Sk∗ in Eq. 3.160, we have,
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Pr
[(

I(Sk) ≤ Î(Sk)− εe

2e− 1
OPT k,∀Sk

)
and

(
Î(Sk∗) ≤ OPT k − εe

2e− 1
OPT k

)]
≤
∑
Sk

Pr
[
I(Sk) ≤ Î(Sk)− εe

2e− 1
OPT k

]
+ Pr

[
Î(Sk∗) ≤ OPT k − εe

2e− 1
OPT k

]
≤ δ

M

(
n

i

)
+

δ

M
=
δ(Mk − 1)

M
(3.161)

Since Ŝk is one of those possible sets Sk, we obtain the following corollary of the

above inequality by keeping just the term related to Sk in the first half,

Pr[I(Ŝk) ≥ Î(Ŝk)− εe

2e− 1
OPT k and Î(Sk∗) ≥ OPT k − εe

2e− 1
OPT k] ≤ δ(Mk − 1)

M
(3.162)

Since Max-Coverage (Algo. 20) returns Ŝk with,

CovR(Ŝk) ≥ (1− 1/e)CovR(Skmax) ≥ (1− 1/e) CovR(Sk∗), (3.163)

where Skmax is the optimal size-k solution of Max-Coverage [37].

Assume that I(Ŝk) ≥ Î(Ŝk) − εe
2e−1

OPT k, Î(Sk∗) ≥ OPT k − εe
2e−1

OPT k, based on

Eq. 3.163, we derive the following,

I(Ŝk) ≥ Î(Ŝk)− εe

2e− 1
OPT k

≥ CovR(Ŝk)

mR
n− εe

2e− 1
OPT k

≥ (1− 1/e)
CovR(Sk∗)

mR
n− εe

2e− 1
OPT k

≥ (1− 1/e)Î(Sk∗)− εe

2e− 1
OPT k

≥ (1− 1/e)(1− εe

2e− 1
)OPT k − εe

2e− 1
OPT k

≥ (1− 1/e− ε)OPT k (3.164)

201



www.manaraa.com

Note that to derive Eq. 6.5, we only need two conditions I(Ŝk) ≥ Î(Ŝk) − εe
2e−1

OPT k,

Î(Sk∗) ≥ OPT k − εe
2e−1

OPT k which are the subject of the inequality in Eq. 3.162. Thus,

from inequalities in Eq. 3.162 and Eq. 6.5, we obtain Lemma 46 that,

Pr[I(Ŝk) ≤ (1− 1/e− ε)OPT k] ≤ δ(Mk − 1)

M
, (3.165)

and complete our proof.

Lemmas 45 and 46 together prove that if there exists a set Sk where |Sk| = k such

that CovR(Sk) ≥ Λ, then the greedy algorithm for selecting seed set on the collection R

R will return a (1 − 1/e − ε)-approximate solution Ŝk. As a result, the following lemma

states the approximation guarantee of Ŝk.

Lemma 47. For any k ∈ {klower, . . . , kupper}, LISA selects a set of k nodes Ŝk,

Pr[I(Ŝk) ≤ (1− 1/e− ε)OPT k] ≤ δ
Mk

M
(3.166)

Proof. Note that LISA algorithm keeps generating RR sets until the degree of each set Ŝk

returned by Max-Coverage exceeds Λ. From Lemma 45, we obtain,

Pr[mR ≤ T k] <
δ

M
,∀k = klower, . . . , kupper (3.167)

Assume that mR ≥ T k, from Lemma 46, we also have,

Pr[I(Ŝk) ≤ (1− 1/e− ε)OPT k] ≤ δ(Mk − 1)

M
. (3.168)

Combine Eqs. 3.167 and 3.168, it is followed that,

Pr[I(Ŝk) ≥ (1− 1/e− ε)OPT k] ≥ 1− Pr[mR ≤ T k]− Pr[I(Ŝk) ≤ (1− 1/e− ε)OPT k]

= 1− δ

M
− δ(Mk − 1)

M
= 1− δMk

M
(3.169)

Thus, we complete the proof of Lemma 47.
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Lemma 47 states the approximation guarantee of each set Ŝk. The following theorem

uses this result with a simple union bound over (kupper − klower + 1) seed sets Ŝk, ∀k ∈

{klower, . . . , kupper} to show the overall approximation factor of LISA algorithm.

Theorem 18. LISA algorithm returns a sequence of seed sets Ŝklower , . . . , Ŝkupper satisfying

Pr[I(Ŝk) ≥ (1− 1/e− ε)OPT k, for all k ∈ {klower, . . . , kupper}] ≥ 1− δ (3.170)

Equivalently, LISA has an IS approximation factor of (1− 1/e− ε).

3.3.3.2 Complexity Analysis

Time complexity. The Max-Coverage procedure of LISA can be implemented in a

linear-time in terms of the total size of all the RR sets. As we shall show later in the space

complexity section, the expected total size of the RR sets isO(Λ ·n). Thus Max-Coverage

has an expected time complexity O(Λ · n).

We shall bound the time-complexity of generating RR sets via the number of edges

examined. Keeping track of the maximum degree in the collectionR is relatively easy and

can be done with little additional cost.

Lemma 48. The expected number of edges examined by LISA is at most Λ ·m.

Proof. The proof consists of two parts 1) bound the expected number of RR sets mR and

2) estimate the mean number of edges visited per reverse influence sampling.

Number of RR sets: Let v∗ = arg maxv∈V I(v), the most influential node. Note that v∗

is not necessary the same with v̂1, selected by LISA. Define Yj = min{|{v∗} ∩ Rj|, 1}|, a

random variable with mean µY = I(v∗)/n.

Denote by T (Λ) and T ∗(Λ) the random variables that correspond to the numbers of

sampled RR sets until CovR(S̄klower) = Λ and CovR(v∗) = Λ, respectively. Clearly,

203



www.manaraa.com

T (Λ) = mR ≤ T ∗(Λ), hence,

E[Tmax(Λ)] ≤ E[T ∗(Λ)].

Using Wald’s equation [108], and that E[T ∗(Λ)] <∞ we have

E[T ∗(Λ)]µY = Λ

Therefore,

E[mR] = E[T (Λ)] ≤ E[T ∗(Λ)] =
Λ

µY
.

Average number of edges visited per reverse influence sampling: The reverse influence

sampling procedure picks a source vertex u uniformly at random. Then for each vertex v,

it will examine all in-neighbors of v with a probability I(v, u), the probability that v can

reach to u over all sample graphs of G (aka the probability that v influences u). Thus the

mean number of edges examined by the procedure is

1

n

∑
u∈V

(
∑
v∈V

I(v, u)d−(v)) =
1

n

∑
v∈V

d−(v)
∑
u∈V

I(v, u)

=
1

n

∑
v∈V

d−(v)I(v) ≤ 1

n

∑
v∈V

d−(v)I(v∗) =
m

n
I(v∗) (3.171)

Therefore, the expected number of edges examined by LISA is at most

m

n
I(v∗)

Λ

µY
= mµY

Λ

µY
= Λm (3.172)

This yields the proof.

Theorem 19. LISA has expected running timeO((log 1
δ
+logM) 1

ε2
(m+n)) where logM <

kupper log n(kupper−klower+1)

kupper
.

Proof. Since Max-Coverage has a time complexity O(Λn) and generating RR sets has an

expected runtimeO(Λm), it follows that the expected time complexity of LISA isO(Λ(m+
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n)) = O((log 1
δ

+ logM) 1
ε2

(m+ n)).

To evaluate log(M), we fist have the following,

log(M) = log
( kupper∑
k=klower

Mk

)
= log

( kupper∑
k=klower

(
n

k

)
+ 2
)

(3.173)

Since kupper ≤ n/2,

log
[ kupper∑
k=klower

(
n

k

)
+ 2
]
≤ log

[ kupper∑
k=klower

(
n

kupper

)]
≤ log

[
(kupper − klower + 1)

(
n

kupper

)]
≤ log

[
(kupper − klower + 1)

( n

kupper

)kupper]
≤ kupper log

n(kupper − klower + 1)

kupper

Space complexity. Besides an O(m + n) space to hold G, we show that on average

only an additionalO(n) space is sufficient to hold the RR sets. Thus, LISA has an expected

linear space complexity O(m+ n).

Lemma 49. The expected additional space to store all the RR sets isO((log 1
δ
+logM) 1

ε2
n).

Proof. From the proof of Lemma 48, the expected number of RR sets is at most Λ/µY with

µY = maxv∈V I(v)/n. The mean size of a RR set can be computed as

1/n
∑
u∈V

∑
v∈V

I(v, u) = 1/n
∑
v∈V

I(v) ≤ nµY

Therefore, the expected value of the total sizes of all RR sets is at most

Λ

µY
× nµY = Λn = (log

1

δ
+ logM)

1

ε2
n.
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This completes the proof.

3.3.3.3 IM

The IM problem can be solved by first running LISA and returning Ŝk = {v̂1, v̂2, . . . , v̂k}.

The approximation and running time follow directly.

Theorem 20. There exists a randomized algorithm that returns a (1−1/e−ε)-approximate

of the IM problem in an expected time O(Λ(m+ n)).

3.3.3.4 Extension to IC model

Our LISA algorithm is easily extended to work on the Independent Cascade (IC)

model without effecting the approximation guarantee and complexity order. Differ from

the Linear Threshold (LT) model, the edge weight assumption is 0 ≤ w(u, v) ≤ 1 (not∑
u∈V w(u, v) ≤ 1,∀v in LT model). IC also operates in rounds, however, the activation

criteria is modified to: instead of having a randomly chosen threshold λv and v is acti-

vated if the total weights form active neighbors exceed λv, a node in IC model becomes

active through its incoming-edges from the newly activated neighbors. A newly-activated

node u will have a single chance of activating its out-going neighbor v and succeed with

probability equal the edge weight w(u, v).

As presented in [55], the IC model is also equivalent to a live-edge model and thus,

similarly to LT model, corresponds to an RIS sampling procedure [11], termed RIS-IC. By

replacing the RIS-LT sampling in LISA with the IC version and following the analysis as

for LT model, we obtain the same approximation guarantees (independent with sampling

techniques) and complexity results.

Theorem 21. LISA algorithm for the IC model has an expected running time O((log 1
δ

+

logM) 1
ε2

(m + n)) and returns a sequence of seed sets Ŝklower , . . . , Ŝkupper that is an (1 −
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1/e− ε) IS approximate solution.

3.3.4 Experiments

In this section, we experimentally evaluate the performance of LISA against the ex-

isting state-of-the-art methods, including IMM [105], TIM/TIM+ [106], CELF++[46] and

Simpath [47] on five real-world networks with a wide range of sizes from various disci-

plines. Since there is no easy way of extending the existing algorithms for IS problem,

we have to run these algorithms multiple times for all k ∈ {klower, . . . , kupper}. The ex-

perimental results show that our algorithm can solve the IS problem in several orders of

magnitudes faster than the runner-up IMM.

3.3.4.1 Experimental Settings

Table 23.: Datasets’ Statistics

Datasets NetHEPT NetPHY Epinions DBLP Twitter

Nodes 15K 37K 76K 655K 41.7M

Edges 59K 181K 509K 2M 1.5G

Type undirected undirected directed undirected directed

Avg. degree 4.1 4.87 13.4 6.1 70.5

Datasets. We perform our experiments in five datasets: NetHEPT, NetPHY, Epinions,

DBLP, and Twitter. The basic statistics of these networks are summarized in Table 23.

NetHEPT, NetPHY and DBLP are collaboration networks taken from the “High Energy

Physics - Theory”, “Physics” sections of arXiv.org and “Computer Science Bibliography”.

These undirected networks were frequently used in previous works [43, 47, 19]. In the

networks, nodes and edges represent authors and co-authorship, respectively. The Epin-

ions dataset is the who-trust-whom online social network of a consumer review site Epin-

ions.com. Specially, the largest network is a large portion of Twitter, crawled in July 2009
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Fig. 25.: Spread of Influence under the LT model (the higher the better)

with 41.7 million nodes and 1.5 billion edges [65].

Metrics. For each algorithm, we measure 1) the spread of influence, i.e., the expected

number of influenced nodes eventually, 2) the running time, and 3) the peak memory con-

sumption. Note that we only need to run LISA once to get the metrics for all different

k = klower, . . . , kupper, in contrast, we have to run the other algorithms for each value of k

individually. We terminate algorithms that take more than 24 hours.

Parameters. We set ε = 0.1 and δ = 1/n for LISA, IMM and TIM/TIM+, unless

otherwise mentioned. For CELF++, we use the pruning threshold µ of 10−3. For Simpath,

we also set the pruning threshold µ to 10−3 and look-ahead value l to 4 as suggested in

[47]. Finally, we validate the spread of influence of the outputted seed sets using EIVA

(Section 3.3.2) with very high accuracy level: ε = 0.01 and δ = 1/n. In our experiments,
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Fig. 26.: Running time of the algorithms under the LT model (see Fig. 25 for legends)

we target the sets with sizes from 1 to 1000 (klower = 1, kupper = 1000).

Weight settings. We adopt the methods in [55] to calculate the influence weights

on edges. More precisely, we assign the weight on an edge (u, v) as buv = A(u,v)
D(v)

where

A(u, v) is the number of actions both u and v perform, and D(v) is the in-degree of node

v, i.e., N(v) =
∑

u∈N in(v) A(u, v).

Enviroment. Our implementation is written in C++ and compiled with GCC 4.7. All

our experiments are carried out using a Linux machine with a 2.2GHz 8 core Intel Xeon

CPU and 100GB memory of RAM.
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Fig. 27.: Memory usage of the algorithms under the LT model (see Fig. 25 for legends)

3.3.4.2 Results

We carry two set of experiments: 1) on moderate-size datasets, i.e., NetHEPT, Net-

PHY, Epinions and DBLP in which we run LISA and the competing algorithms under LT

model since the results on IC model are similar and report the expected influence, running

time and memory usage; 2) on the billion-scale Twitter network in which we run LISA,

IMM, TIM and TIM+ (only these algorithms can handle Twitter dataset) under both the LT

and IC models and report the running time and memory usage.

Solution Quality. The quality of the algorithms, measured as the expected number

of influenced nodes eventually and termed spread of influence are shown in Figure 25. We

see that all the tested algorithms admit comparable performance in all cases (on all four

datasets and with any value of seed set size k). The experimental results also confirm the

210



www.manaraa.com

viral marketing behaviors of the influence due to the submodularity property. That is the

first few selected nodes carry a huge influence gain and the later ones only bring in smaller

marginal influence. Here, we emphasize that only LISA guarantees all the returned seed

sets with sizes up to 1000 to have good quality and thus we only run LISA once with

klower = 1 and kupper = 1000. The other algorithms can guarantee at each particular size

and need to run 1000 times, i.e., one for each value of k.

Running Time. In these experiments, we test the performance of all the algorithms

on four moderate-size networks. Since all the methods except LISA have to rerun for

each value of k ∈ {klower, . . . , kupper}, we need to accumulate the times for all runs to

get a total running time. Thus, we choose a set of 10 small intervals (klower, kupper) ∈

{(1, 100), (100, 200), . . . , (900, 1000)} so that we do not bias and have a fair comparison.

The results are presented in Fig. 34. We see that although the intervals are fairly small,

LISA vastly outperform the rest of the algorithms in terms of running time. In particular,

LISA is always about 100 times faster than the second best IMM methods and up to three

orders of magnitudes faster than TIM+ and TIM.

Memory Consumption. We show the memory usages of all the algorithms in Fig. 27.

We see that LISA consumes much less memory than TIM+ and TIM but more than IMM,

CELF++ and Simpath. However, note that these are moderate-size networks, for larger

data as Twitter in the next experiment, LISA requires significantly less memory than IMM,

TIM+ and TIM. CELF++ and Simpath implement the naive greedy and only need to store

the graph and, indeed, they consume less memory than the others.

Experiments on the billion-scale Twitter network. Since Twitter is the largest tested

dataset with millions of nodes and billions of edges, we test LISA and other algorithms

under both the LT and IC models on this network. Since the solution quality is identical,

we only illustrate the running time and memory usage of the algorithms under the LT and

IC models. Since IMM, TIM+ and TIM take very long to run Twitter and for smaller k,
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Fig. 28.: Running time of the best algorithms on the billion-scale Twitter network
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Fig. 29.: Memory usage of the best algorithms on the billion-scale Twitter network

they requires less time than larger k, we only run them once with k = klower and consider

that to be running time per set size within klower and kupper. With LISA, we still run for

the whole interval but divide the running time by 100 to get the runtime per set size. The

results are presented in Figs 28 and 29. These figure again confirm the superiority of LISA

in terms of running time: it is up to several orders of magnitudes faster than the others and

requires half of the memory for the others.
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3.3.5 Conclusion

We propose the computation of Influence Spectrum (IS) to give better insights for

decision making and resource planning in viral marketing campaigns. To compute IS, we

design LISA, an efficient approximation algorithm for IS. LISA returns an (1 − 1/e −

ε)-approximate influence spectrum with high probability. In practice, LISA also vastly

surpasses the state-of-the-art IM methods, being in several orders of magnitudes faster than

the rest. While the analysis of LISA is based on LT and IC model, all the results also hold

the generalized models that combine both LT and IC in [54]. In the future, we will attempt

to push the limit further to develop sublinear time approximation algorithms for IS and IM

problems.
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CHAPTER 4

TRACING THE SOURCES OF MISINFORMATION CASCADES

Given an aftermath of a cascade in the network, i.e. a set VI of “infected” nodes after an

epidemic outbreak or a propagation of rumors/worms/viruses, how can we infer the sources

of the cascade? Answering this challenging question is critical for computer forensic, vul-

nerability analysis, and risk management. Despite recent interest towards this problem,

most of existing works focus only on single source detection or simple network topologies,

e.g. trees or grids.

In this paper, we propose a new approach to identify infection sources by searching

for a seed set S that minimizes the symmetric difference between the cascade from S and

VI , the given set of infected nodes. Our major result is an approximation algorithm, called

SISI, to identify infection sources without the prior knowledge on the number of source

nodes. SISI, to our best knowledge, is the first algorithm with provable guarantee for the

problem in general graphs. It returns a 2
(1−ε)2 ∆-approximate solution with high probability,

where ∆ denotes the maximum number of nodes in VI that may infect a single node in the

network. Our experiments on real-world networks show the superiority of our approach

and SISI in detecting true source(s), boosting the F1-measure from few percents, for the

state-of-the-art NETSLEUTH, to approximately 50%.

Summary of contributions:

• We propose a new approach to identify multiple infection sources through minimiz-

ing the symmetric difference between the cascade of the suspected source nodes S

with the infected nodes VI without knowing the number of sources a priori. Our ex-

periments show that methods following this approach including our algorithm SISI
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and the greedy algorithm outperform the other approaches in terms of detecting true

sources.

• To our best knowledge, we propose the first approximation algorithm, termed SISI,

for detecting multiple infection sources in general graphs and our algorithm does not

require the knowledge on the number of infection sources. Given an approximation

error ε > 0, we provide rigorous analysis on sample complexity, deriving the neces-

sary number of samples to guarantee a multiplicative error (1 ± ε) on the objective

estimation.

• Extensive experiments on real-world networks shows the superiority of SISI over

other approaches in detecting the exact sources under both SI and IC models. The

relax version of SISI is also faster than NETSLEUTH while still retaining high-

quality solutions.

4.1 Related works

Infection Source Identification (ISI) under different names has recently emerged and

attracted quite a number of researchers in multiple disciplines with diverse techniques.

There are two main streams of works and methods that can be listed: 1) exact algorithms

on tree graphs [102, 101, 78, 67, 31], 2) ad hoc heuristics approaches without any guarantee

for general graphs [97, 78, 75].

In the first stream, Shah and Zaman in [102] established the notion of rumor-centrality

which is an Maximum Likelihood estimator on regular trees under the SI model. They

proposed an optimal algorithm to identify the single source of an epidemic. In [101],

the same authors improved the previous results by deriving the exact expression for the

probability of correct detection. Later Luo et al. [78] based on approximations of the

infection sequences count to develop an algorithm that can find at most two sources in a
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geometric tree. Since solely targeting trees, all these methods are unable of solving ISI

problem on general graphs.

Lappas et al. [67] formulated ISI problem under the name of k-effector and introduced

the minimization of the symmetric difference between the observed infection and the re-

sulting cascade if starting from a candidate source set. While the formulation is novel, their

solution is, unfortunately, limited to tree graphs and require the knowledge of the number

of infection sources. The extension for general graphs by approximating a graph by a tree

does not work well either as we show later in the experiment section.

Prakash et al. [97] resort to heuristic approach to find multiple sources in general

graphs and propose NETSLEUTH which relies on the two-part code Minimum Description

Length. They show that NETSLEUTH is able to detect both the sources and how many of

them. However, besides no guarantee on solution quality, we show in our experiments that

NETSLEUTH performs poorly on a simple grid graph with large overlapping region of

cascades from two source nodes. Luo et al. [78] also derived an estimator to find multiple

sources given that the maximum number of sources is provided. Yet similar to [67], their

estimator depends on the approximation of a general graph to tree and also requires the

maximum number of sources.

There are also other works on related areas: [53] studies the rumor-centrality estimator

on trees under an additional constraint that the status (infected or not) of a node is revealed

with probability p ≤ 1. In case of p = 1, the estimator is able to reproduce the previous

results and with large enough p < 1, it achieves performance within ε the optimal. Under

a different model, Chen et al. [22] study the problem of detecting multiple information

sources in networks under the Susceptible-Infected-Recovered (SIR) model. They propose

an estimator for regular trees that can detect sources within a constant distance to the real

ones with high probability and investigate a heuristic algorithm for general cases. In an-

other study [75], Lokhov et al. take the dynamic message-passing approach under SIR
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model and introduce an inference algorithm which is shown to admit good improvement.

Influence maximization problem [55] that find k nodes to maximize the expected influ-

ence is one of the most extensively studied problem. The latest references on the problem

can be found in [105] and the references therein.

4.2 Models and Problem definition

We represent the network in which the infection spreads as a directed graph G =

(V,E) where V is the set of n nodes, e.g., computers in a computer network, and E is the

set of m directed edges, e.g., connections between the computers. In addition, we are given

a subset VI ⊆ V of observed infected nodes and the remaining nodes are assumed to be not

infected and denoted by V̄I = V \VI .

Table 24.: Table of Notations

Notation Description

n,m #nodes, #edges of graph G = (V,E).

VI , V̄I Set of infected and uninfected nodes.

β, k Infection probability and k = |VI |.
V (S,M) An infection cascade from S under modelM.

D(S,M, VI) Symmetric different on a graph realization.

E [D(S,M, VI)] The expectation of D(S,M, VI) over all realiza-
tions.

Ŝ The returned source set of SISI.
OPT, S∗ The optimal value of E [D(S, τ)] and an optimal so-

lution set which achieves the optimal value.

Rj , src(Rj) A random RR set and its source node src(Rj).

∆ Maximum size of an RR set (∆ ≤ VI ).
c,M c = 2(e− 2) ≈

√
2, M = 2k + 1.

Λ Λ = (1 + ε)2c(ln 2
δ + k ln 2 + 1) 1

ε2
.
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4.2.1 Infection Model

We focus on the popular Susceptible-Infected (SI) model.

Susceptible-Infected (SI) model. In this infection model, each node in the network

is in one of two states: 1) Susceptible (S) (not yet infected) and 2) Infected (I) (infected

and capable of spreading the disease/rumor). Once infected, the node starts spreading to its

neighbors through their connections. While the initial model were proposed for a complete

graph topology [6], the model can be extended for arbitrary graph G = (V,E). We assume

that the infection spreads in discrete time steps. At time t = 0, a subset of nodes, called the

infection sources, are infected and the rest is uninfected. Once a node u gets infected at time

t, it will continuously try to infect its uninfected neighbor v and succeed with probability

0 < β ≤ 1 from step t+ 1 onwards until successful. The single parameter β indicates how

contagious the infection is and thus the higher, the faster it contaminates the network.

Other cascade model. In principle, our formulation and proposed method will work

for most progressive diffusion models in which once a node becomes infected, it stays in-

fected. These include the two popular models Independent Cascade IC and Linear Thresh-

old (LT) models [55]. Other non-progressive models can be first converted to a progressive

ones as outlined in [21].

For simplicity, we present our method for the SI model and discuss the extension to

the IC and LT models through changing the sampling method in Subsection 4.3.1.

Learning model parameters. Learning propagation model parameters is an impor-

tant topic and has received a great amount of interest [58, 104, 43, 74, 63]. Our approaches

can rely on these learning methods to extract influence cascade model parameters from real

datasets, e.g., action logs, connection networks.
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4.2.2 Problem Formulation

Intuitively, given an infection model, denoted by M, the goal of infection source

identification is to identify a set of source nodes S (unknown size) so that the resulting

cascade originated from nodes in S, within a duration τ > 0, matches VI as closely as

possible.

To formalize the problem, we define a cascade V (S,M) as the set of infected nodes

if we select nodes in S as the sources (initially infected) under infection modelM. Thus,

the objective function which characterizes the aforementioned criteria, termed symmetric

difference, is defined as follows,

D(S,M, VI) = |VI\V (S,M)|+ |V̄I ∩ V (S,M)| (4.1)

Fig. 30.: Illustration of symmetric difference.

In Eq. 4.1, the first term |VI\V (S,M)| counts the number of nodes in VI that are

not infected by the propagation spreading from S within a duration τ and the second term

indicates the number of nodes that are “mistakenly” infected during the same time interval

(illustrated in Fig. 30). Together, the sum measures the similarity between the observed

cascade VI and the cascade causes by the suspected nodes S.
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Due to the stochastic nature of the cascade, there are exponentially many possible cas-

cades for a given set of source nodes S. Here cascade is used to refer to the set of infected

nodes within τ steps. To account for this, we aggregate the symmetric difference over the

probabilistic space of the possible cascades spreading from S. Denote by Pr[V (S,M)],

the probability of receiving a particular cascade V (S,M) within t = τ time steps. We

compute the expected symmetric difference as follows,

E[D(S,M, VI)] =
∑

possible V (S,M)

D(S,M, VI) Pr[V (S,M)]

=
∑

possible V (S,M)

(|VI\V (S,M)|+ |V̄I ∩ V (S,M)|) Pr[V (S,M)]

=
∑
u∈VI

Pr[u not infected by S] +
∑
v/∈VI

Pr[v infected by S] (4.2)

In the last equation, the ‘infected’ and ‘not infected’ probabilities are w.r.t. a random

cascade from S within τ steps.

We now state the problem of identifying the infection sources as follows.

Definition 16 (Infection Sources Identification). Given a graph G = (V,E), infection

modelM (e.g., β for SI model), observation set VI of infected nodes, and the duration of

the cascade τ (could be infinity), the Infection Sources Identification (ISI) problem asks for

a set Ŝ of nodes such that,

Ŝ = arg min
S⊆VI

E[D(S,M, VI)] (4.3)

While this formulation is similar to [67], we do not require knowledge on the number

of infection sources.
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4.2.3 Hardness and Inapproximability

This subsection shows the NP-hardness and inapproximability results of the ISI prob-

lem. From Def. 16, there are two major difficulties in finding the sources: 1) first, by a

similar argument to that of the influence maximization problem in [55], the objective func-

tion is #P-hard to compute exactly; 2) second, the objective is non-submodular, i.e., there

are no easy greedy approaches to obtain approximation algorithms. In fact, we show a

stronger inapproximability result in the below theorem.

Theorem 22. ISI cannot be approximated within a factor O(2log1−ε n) for any ε > 0, where

n = |V |, unless NP ⊆ DTIME(npolylog(n)).

Proof. To prove Theo. 22, we construct a gap-preserving polynomial-time reduction which

reduces any instance of the Red-Blue Set Cover problem [13] to an instance of ISI. The

Red-Blue Set Cover problem is defined as follows: an instance of Red-Blue Set Cover

problem consists of two disjoint sets: R = {r1, ..., rp} of red elements, B = {b1, ..., bq} of

blue elements, and a family T ⊆ 2R∪B of n(n ≥ p, n ≥ q) subsets of R ∪B. The problem

asks a subfamily C∗ ⊆ T of subsets that covers all the blue elements but minimum number

of reds,

C∗ = arg min
C⊆T
{|R ∩ (∪|C|i=1Ti)|} (4.4)

Our polynomial reduction ensures that if the ISI instance has anO(2log1−ε n)-approximate

solution S, then there must be a corresponding O(2log1−ε n)-approximate solution of the

Red-Blue Set Cover polynomially induced from S. The reduction is grounded on the ob-

servation that any solution of the Red-Blue Set Cover costs at most p - the number of

red elements. Then, based on the result in [13] that the Red-Blue Set Cover cannot be

approximated within a factor O(2log1−εN) where N = n4 for any ε > 0 unless NP ⊆

DTIME(Npolylog(N)), we obtain the Theorem 22.
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We will give a polynomial reduction from an instance of the Red-Blue Set Cover to an

ISI instance with β = 1 and τ = 1 such that,

(1) The optimal solution of the ISI instance polynomially infers the optimal solution for

the instance of Red-Blue Set Cover.

(2) If we obtain anO(2log1−ε n)-approximate solution for ISI, we will also have anO(2log1−ε n)-

approximate solution for the Red-Blue Set Cover instance.

These two conditions are sufficient to conclude that we cannot approximate the optimal

solution of ISI within a factor O(2log1−ε n) unless we can do that for Red-Blue Set Cover.

Thus, the Theorem 22 follows. We will present the reduction and then prove the satisfaction

of each condition.

. . .

. . .
𝑽𝑰
𝟏(𝟏) 𝑽𝑰

𝟏(𝟐) 𝑽𝑰
𝟏(𝒏)

𝑽𝑰
𝟐(𝟏) 𝑽𝑰

𝟐(𝒒)

. . .

. . . . . .

. . .. . .. . .

. . .

. . . . . .
𝑼𝟏
𝟏 𝑼|𝑹|+𝟏

𝟏 𝑼𝟏
𝒒 𝑼 𝑹 +𝟏

𝒒

. . .. . .

𝑼𝟎

. . . . . .

Fig. 31.: Reduction from Red-Blue Set Cover to ISI in which infected nodes are blue-

colored and uninfected nodes are in red.

Given an instance of Red-Blue Set Cover with two sets R,B and a family T , we

suppose all the subsets in T contains at least a blue element, otherwise we can trivially
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discard all those subsets since we never select that type of subsets. In the reverse way,

we also suppose every pair of subset in T has at least one red element different from each

other. Otherwise we always select/reject both at the same time without changing the cost,

in other words, we can group together to create one subset. We construct a corresponding

ISI instance consisting of the node set V , the infected set VI ⊆ V and the set of edges E as

follows (depicted in Fig. 43):

• Set of infected nodes VI : For each subset Ti ∈ T , there is a set V 1
I (i) of infected

nodes whose number is the number of blues in Ti. For each blue node Bj in B, we

form a set V 2
I (j) of |R|+ 1 infected nodes.

• Set of uninfected nodes V \VI : For each infected node l in V 2
I (j), a set U j

l of |R| +

1 uninfected nodes is constructed. We also have a set U0 of p uninfected nodes

corresponding to the red set R in Red-Blue Set Cover instance.

• Set of edges E: For any pair (u, v) ∈ V 1
I (i), we connect them by an edge, so that the

subgraph of nodes in V 1
I (i) is a clique. For each u ∈ Ti ∩ Tj , we connect the two

corresponding nodes in V 1
I (i) and V 1

I (j) by an edge. For each u ∈ V 1
I (i), we connect

u to all |R|+ 1 nodes in V 2
I (u) and, subsequently, each node l in V 2

I (u) is connected

to all |R| + 1 nodes in Uu
l . For any pair u, v ∈ V 1

I (j) for each j ∈ {1, ..., n}, we

connect u with all the nodes in V 2
I (v) and v with all the nodes in V 2

I (u). If the subset

Ti contains red element Rj , then for each u ∈ V 1
I (i), there is an edge connecting u

to the corresponding node of Rj in U0.

Now, we will prove the two conditions consecutively. Our proof relies on two obser-

vations: the first one is that if the feasible solution for ISI contains at least an infected node

from V 2
I (j) for some j ∈ {1, ..., q}, then the number of uninfected nodes covered is at least

|R| + 1 which causes the cost to be at least |R| + 1. The same phenomenon happens if an

infected node v in V 1
I (j) for some j ∈ {1, ..., n} is not covered since there would be |R|+1
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infected nodes in V 2
I (v) not covered. On the other hand, if all the infected nodes in V 1

I (j)

for all j ∈ {1, ..., n} are covered, then all infected nodes in the whole network are indeed

covered and at most |R| uninfected nodes (in U0) are also covered. The second observation

with the previous case is that in the original Red-Blue Set Cover instance, we select those

subset Ti such that the corresponding V 1
I (i) contains a infection source chosen in ISI, then

the cost in the two problem are equal (cover the same number of red elements/uninfected

nodes).

Prove condition (1). Based on our observation, the optimal solution S∗ of the ISI

instance has to cover all the nodes in V 1
I (j) for all j and has the least number of uninfected

nodes covered. From this solution, we construct the solution for the original Red-Blue Set

Cover instance by selecting the subfamily C∗ of subsets Ti such that the corresponding

V 1
I (i) contains a infection source in the optimal solution of ISI. First, this subfamily covers

all the blue elements since each blue element corresponds to some infected nodes in V 1
I (j)

for some j. Secondly, if this subfamily has the lowest cost (covers the least number of red

elements). Otherwise, suppose that a different subfamily Ĉ has lower cost, then we can

equivalently find another solution for the reduced ISI instance and obtain the same cost

(lower than that of S∗). That contradicts with the optimality of S∗.

Prove condition (2). Based on condition (1) that the optimal solution of ISI instance

infers the optimal solution of Ref-Blue Set Cover with the same cost. Suppose we have

an O(2log1−ε n)-approximate solution Ŝ for Red-Blue Set Cover instance, there are two

possible cases:

• If Ŝ contains a node in V 2
I (j) for some j or Ŝ does not cover a node in V 1

I (j) for some

j, then based on the first observation, the cost of Ŝ has to be at least |R|+ 1. Because

this is an O(2log1−ε n)-approximate solution, we just select the whole family T in

Red-Blue Set Cover instance which has cost of only |R| and obtain an O(2log1−ε n)-
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approximate solution.

• Otherwise, based on the second observation, we can easily construct a solution for

Red-Blue Set Cover with equal cost and thus obtain an O(2log1−ε n)-approximate so-

lution.

Lastly, note that the number of blue and red elements must be at least |T |, otherwise

we can drop or merge some sets together without effecting any solution. Thus, by following

our construction of the ISI instance, we determine the number of uninfected nodes,

|V | = |U0|+
n∑
i=1

|V 1
I (i)|+

q∑
i=1

|V 2
I (i)| ·

|R+1|∑
j=1

|U i
j |

≤ |T |+ |T |+ |T |2(|T |+ 1) ≤ |T |4 (—T | ≥ 4) (4.5)

Since |T | = n and the Red-Blue Set Cover cannot be approximated within a factor of

O(2log1−εN) where N = n4 for any ε > 0 unless NP ⊆ DTIME(Npolylog(N)), we obtain our

results in Theo. 22.

4.3 Sampling-based SISI algorithm

In this section, we present SISI, our sampling-based method with guarantee on achiev-

ing 2
(1−ε)2 ∆-approximation factor for arbitrary small ε > 0. Here ∆ equals the maximum

nodes in VI that can infect a single node in the graph and is the same with the maximum

sample size in Subsec. 4.3.1.

Outline. SISI contains two key components: 1) an efficient Truncated Reverse In-

fection Sampling (TRIS) to compute the objective with high accuracy and confidentiality

(presented in Subsection 4.3.1) and 2) an innovative transformation of the studied problem

into a submodular-cost covering problem to provide high quality solutions with perfor-

mance guarantees (presented in Subsection 4.3.2). We show the combination of the two

components to obtains the SISI algorithm in Subsection 4.3.3.
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4.3.1 Truncated Reverse Infection Sampling

We propose the Truncated Reverse Infection Sampling (TRIS) strategy to generate

random Reverse Reachable (RR) sets, following the reverse influence sampling method

(RIS) pioneered in [11]. A RR set, Rj , is generated as follows.

Definition 17 (Reverse Reachable set (RR set)). Given G = (V,E), probability β and

propagation time τ , a RR set is generated from G by 1) selecting a (uniformly) random

source node v ∈ V , 2) generating a reverse random cascade from v in G within τ steps

and 3) returning Rj as the set of nodes in the cascade.

The main intuition is that each RR set Rj contains the nodes that can infect its source

v = src(Rj) within a given time τ . Thus RR sets were used in previous works [11, 105,

89] (without the step/time limit t) to estimate influence of nodes. We shall show later in

next subsection that RR sets can also be fine-tuned to estimate the chance of being infection

sources.

Note that the above description of generating RR sets is model-independent, i.e., you

can use it with many different cascade models for reverse cascade simulation in the step 2.

For example, the reverse simulation for IC and LT, the two most popular cascades models,

are presented in [11] and [80], respectively. Here we focus on the reverse sampling for SI

model and highlight the necessary changes to make the method work for our problem.

4.3.1.1 Generating RR Sets under SI model.

The main difference between SI model vs. LT and IC models are SI model allows

multiple attempts for an infected node to its neighbors in contrast to a single attempt in IC

and LT. Given a network G = (V,E) and infection probability 0 < β ≤ 1, RR sets in the

SI model are generated as follows.

1) Select a random node u. Only u is infected at time 0 and all other nodes are not
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Algorithm 21: Fast-TRIS
Input: Graph G, probability β, max time τ and VI

Output: A random RR set Rj

Pick a random node u ∈ V

RR set Rj = {u}

Infection time T{v} =∞, ∀v ∈ V \{u}, T{u} = 0

Min priority queue PQ = {u}

while PQ not empty do
u = PQ.pop()

foreach v ∈ (in-neighbors(u)\Rj) ∪ PQ do
r ← a random number in [0,1]

t← dlog1−β(1− r)e {Assume 0 < β < 1}

T (v) = min{T (v), T (u) + t}

if T (v) < τ then

if v /∈ Rj then

if v ∈ VI then
Rj = Rj ∪ {v}

end

PQ.push(v)

else
PQ.update(v)

end

end

end

end

Return Rj
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infected.

2) For each time step i ∈ [1, τ ], consider all edges (u, v) ∈ E in which v is infected and

u is not infected (note the direction). Toss a β-head biased coin to determine whether

u succeeds in infecting v. If the coin gives head (with a probability β), we mark u as

infected.

3) After τ steps, return Rj as the set of infected nodes, removing all nodes that are not

in VI .

Note the last step, the nodes that are not in VI will be removed from the RR set (hence the

name truncated). This truncation is due to the observation that the suspected nodes must

be among the infected nodes in VI . Our RR sets are in general smaller than the RR sets in

[11] and might be empty. This saves us a considerable amount of memory in storing the

RR sets.

A naive implementation of the above reserve sampling has a high complexity and does

not scale when τ grows, thus we present a fast implementation using geometric distribution

in Algorithm 21.

The complete pseudocode for the fast TRIS algorithm is described in Alg. 21. The key

observation to speed up the TRIS procedure is that each trial in the sequence of infection

attempts is a Bernoulli experiment with success probability of β. Thus this sequence of

attempts until successful actually follows a geometric distribution. Instead of tossing the

Bernoulli coin many times until getting a head, we can toss once and use the geometric

distribution to determine the number of Bernoulli trials until successful (Lines 8,9).

Another issue is the order of attempts since a node can be infected from any of her

in-neighbors but only the earliest one counts. Therefore, we will keep the list of all newly

infected nodes in a min priority queue (PQ) w.r.t infection time. In each iteration, the

top node is considered (Lines 6). The algorithm behaves mostly like the legacy Dijkstra’s
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algorithm [41] except we have time for a node w to infect a node v on each edge (w, v)

instead of the length. Also, the algorithm is constrained within the region consisting of

nodes at most ‘distance’ τ from the selected u.

The time complexities of the naive and fast implementation of TRIS are stated in the

following lemma.

Lemma 50. Expected time complexity of the naive TRIS is,

C(Rj) =
∆mτ

n
(4.6)

and that of the fast implementation is,

C ′(Rj) =
∆m

n
+ ∆ log(∆) log(1 +

∆m

n2
) (4.7)

Proof. Similar to the analysis of Expected Performance of Dijkstra’s Shortest Path Algo-

rithm in [41] and denote the expected complexity of the fast algorithm by C ′(Rj), we have,

C ′(Rj) = C(edges) + ∆ log(∆) log(1 + C(edges)/n) (4.8)

where C(edges) is the expected number of edges examined. Note that this is different from

C(Rj) since in this case, each edge can be checked once while, for the latter, it is multiple

until successful. ∆ is defined previously as the maximum size of a RR set. We also have,

C(edges) ≤ 1

n

∑
u∈V

∑
v∈V

Pr[u, v]din(v) ≤ ∆m

n
(4.9)

in which the details are similar to that of Eq. 4.6. Thus, combining with Eq. 4.8, we obtain,

C ′(Rj) =
∆m

n
+ ∆ log(∆) log(1 +

∆m

n2
) (4.10)

In Eq. 4.7, the first term is usually the leading factor and, then, the complexity depends

mostly on ∆m
n

. We now analyze the expected time complexity C(Rj) of generating Rj by
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the naive way.

C(Rj) ≤
τ

n

∑
u∈V

∑
v∈V

Pr[u, v]din(v) =
τ

n

∑
v∈V

din(v)
∑
u∈V

Pr[u, v]

where Pr[u, v] is the probability of v infected by u within τ steps, din(v) is the in-degree

of v. Here we take the average over all possible sources u of Rj (each has probability 1/n)

and the maximum number of edge checks for node v is τdin(v). Let denote the maximum

size of a random RR set as ∆, we get
∑

u∈V Pr[u, v] ≤ ∆ and thus,

C(Rj) ≤
τ

n

∑
v∈V

din(v)∆ =
∆τ

n

∑
v∈V

din(v) =
∆mτ

n
(4.11)

From Eq. 4.6, the complexity depends linearly on τ and is very high with large values

of τ .

Thus, the running time C ′(Rj) of our fast implementation is roughly τ times smaller

than that C(Rj) of the naive implementation, especially, for large values of τ .

4.3.1.2 Chance of Being Infection Sources

We show how to utilize the generated RR sets to estimate the chance that nodes being

infection sources. First, we classify each generated RR Rj into one of the two groups,

based on the source of Rj , denoted by src(Rj).

• RBlue = {Rj|src(Rj) ∈ VI}: The set of blue RR sets that sources are.

• RRed = {Rj|src(Rj) /∈ VI}: The set of red RR sets that sources are not in VI .

Since the infection sources infect the nodes in VI but not the nodes outside of VI

(within a time τ ), thus, the infection sources should appear frequently in blue RR sets (of

which sources are in VI) and appear infrequently in red RR sets (of which sources are not

in VI .) Thus, a node v that appear in many blue RR and few red RR sets will be more

likely to be among the infection sources.
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The above observation can be generalized for a given a subset of nodes S ⊂ VI , e.g.,

a subset of suspected nodes. A subset S that covers (i.e. to intersect with) many blue RR

sets and few red RR sets will be more likely to be the infection sources.

Define the following two subgroups of RR sets,

R−Blue(S) = {Rj|Rj ∈ RBlue and Rj ∩ S=∅}, and (4.12)

R+
Red(S) = {Rj|Rj ∈ RRed and Rj ∩ S 6=∅}. (4.13)

They are the blue RR sets that a suspected subset S “fails” to cover (i.e. to intersect with)

and the red RR sets that S (“mistakenly”) covers. The less frequent a random RR set Rj

falls into one of those two subgroups, the more likely S will be the infection sources.

Formally, we can prove that the probability of a random RR set falls into one of those

two subgroups equals exactly our objective function, denoted by E[D(Ŝ, τ, VI)]. We state

the result in the following lemma.

Lemma 51. Given a fixed set S ∈ VI , for a random RR set Rj , denote Xj a random

variable such that,

Xj =


1 if Rj ∈ R−Blue(S) or Rj ∈ R+

Red(S)

0 otherwise.
(4.14)

then,

E[Xj] =
E[D(S, τ, VI)]

n
(4.15)

Proof. Since for a random RR set Rj , Rj ∈ R−Blue(S) and Rj ∈ R+
Red(S) are two mutually

exclusive events,

E[Xj] = Pr
Rj

[Rj ∈ R−Blue(S)] + Pr
Rj

[Rj ∈ R+
Red(S)] (4.16)
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We will prove an equivalent formula of Eq. 4.15 that,

E [D(S, τ)] = n(Pr
Rj

[Rj ∈ R−Blue(S)] + Pr
Rj

[Rj ∈ R+
Red(S)])

Let define G as a realization of the graphG, G ∼ G, where each edge (u, v) is assigned

a length value indicating the number of trials u has to make until v gets infected from u. In

one realization G, the cascade from S at time τ , V (S, τ), is uniquely defined (the reachable

nodes from S within τ -length path) and so as D(S, τ). According to the definition of

E [D(S, τ)] in Eq. 4.2, we have,

E [D(S, τ)] =
∑
u∈VI

Pr
G∼G

[u not infected] +
∑
v/∈VI

Pr
G∼G

[v infected]

Let denote Rj(u) be a random RR set rooted at u, the first term in the right-hand side

is equivalent to,

∑
u∈VI

Pr
G∼G

[u not infected] =
∑
u∈VI

Pr
Rj(u)`G

[S ∩Rj(u) = ∅]

where Rj(u) ` G denotes the consistency of Rj(u) to G since G is a realization of G and

thus Rj(u) is well-defined. Since,

Pr
Rj(u)`G

[S ∩Rj(u) = ∅] = Pr
Rj

[S ∩Rj = ∅ | src(Rj) = u]
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we obtain,

∑
u∈VI

Pr
G∼G

[u not infected] =
∑
u∈VI

Pr
Rj

[S ∩Rj = ∅ | src(Rj) = u]

=
∑
u∈VI

PrRj [S ∩Rj = ∅ & src(Rj) = u]

PrRj [src(Rj) = u]

=
∑
u∈VI

Pr
Rj

[S ∩Rj = ∅ & src(Rj) = u] · n

(since the source of each RR set is randomly chosen)

= n
∑
u∈VI

Pr
Rj

[S ∩Rj = ∅ & src(Rj) = u]

= nPr
Rj

[S ∩Rj = ∅ & src(Rj) ∈ VI ] (4.17)

= nPr
Rj

[Rj ∈ R−Blue(S)] (4.18)

The Eq. 4.17 follows from the fact that, for all u ∈ VI , (S ∩ Rj = ∅ & src(Rj) = u) are

mutually exclusive. Thus,

∑
u∈VI

Pr
G∼G

[u not infected] = nPr
Rj

[Rj ∈ R−Blue(S)] (4.19)

Similarly, we can also achieve,

∑
v∈V̄I

Pr
G∼G

[v infected] = nPr
Rj

[Rj ∈ R+
Red(S)] (4.20)

From Eq. 6.4, Eq. 6.5 and Eq. 4.16, we obtain

E [D(S, τ)] = n(Pr
Rj

[Rj ∈ R−Blue(S)] + Pr
Rj

[Rj ∈ R+
Red(S)])

which completes the proof of Lem. 51.

Lem. 51 suggests a two-stages approach to identify the infection sources: 1) generat-

ing many RR sets and 2) look for a subset S ⊂ VI that minimize the size of |R−Blue(S) ∪
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Rj ∈ R+
Red(S)|. In next two subsections, we address two key issues of this approach 1)

Optimization method to identify S with guarantees and 2) Sample complexity, i.e., how

many RR sets is sufficient to generate a good solution. Too few RR sets lead to biased and

poor solutions, while too many RR set lead to high running time.

4.3.2 Submodular-cost Covering

We will transform the ISI problem to a submodular-cost covering problem over the

generated RR sets. This allows us to apply the ∆-approximation algorithm in [61], where

∆ is the maximum size of any RR set.

By Lemma 51, the problem of minimizing E [D(S,M, VI)] can be cast as a minimiza-

tion problem of Pr[Rj ∈ R−Blue(S) ∪ R+
Red(S)]. This, in turn, can be approximated with

the following problem over the generated RR sets.

min
S⊆VI
|R−Blue(S) ∪R+

Red(S)|, (4.21)

and, sinceRj ∈ R−Blue(S) andRj ∈ R+
Red(S) are disjoint, the above minimization problem

is equivalent to,

min
S⊆VI
|R−Blue(S)|+ |R+

Red(S)| (4.22)

We shall convert the above problem to the submodular-cost covering in [61], stated as

follows.

Definition 18 (Submodular-cost covering). [61] An instance is a triple (c, C, U) where

• The cost function c(x) : Rn
≥0 → R≥0 is submodular, continuous, and non-decreasing.

• The constraint set C ⊆ 2R≥0 is a collection of covering constraints, where each

constraint S ∈ C is a subset of Rn
≥0.
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• For each j ∈ [n], the domain Uj for variable xj is any subset of R≥0.

The problem is to find x ∈ Rn
≥0, minimizing c(x) subject to xj ∈ Uj,∀j ∈ [n] and x ∈

S,∀S ∈ C.

Fig. 32.: Conversion to Submodular-cost covering.

Conversion to submodular-cost covering problem. We convert the form in Eq. 4.22

into a submodular-cost covering problem as demonstrated in Fig. 32. Let q = |RBlue| and

p = |RRed|. We associate a variable xu ∈ [0, 1] for each u ∈ VI to indicate whether the

corresponding node is selected as an infected source. We also assign a variable yj to each

RR set Rj ∈ RBlue. We require all blue RR Rj sets to be covered through the constraint

max{maxu∈Rj xu, yj} ≥ 1. Thus for each blue Rj either xv = 1 for some v ∈ Rj or the

corresponding yj = 1.

The objective is to minimize the cost function minx,y c(x, y) =
∑

Rj∈RRed maxu∈Rj(xu)+∑q
j=1 yj . The first part of the cost function maxu∈Rj(xu) is a submodular function since

the max function is submodular (see footnote 1, page 2 in [61]). The second part
∑q

j=1 yj

is a linear function, and thus is also a submodular function. Therefore, the objective is a

submodular function.

Thus, the problem in Eq. 4.22 can be converted to the following submodular-cost
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covering problem,

min
x,y

c(x, y) =
∑

Rj∈RRed

max
u∈Rj

(xu) +

q∑
j=1

yj (4.23)

subject to (for each Rj ∈ RBlue) max{max
u∈Rj

xu, yj} ≥ 1

Since for any assignment of variable set x, we have a corresponding source selection: node

u is selected as infection source if xu = 1. The first term
∑

Rj∈RRed maxu∈Rj(xu) in

Eq. 4.23 is equivalent to |R+
Red(S)| in Eq. 4.22 and similarly

∑q
j=1 yj together with the

constraints is equivalent to |R−Blue(S)|. In Eq. 4.23, each covering constraint is associated

with a blue RR set Rj and says that if Rj is not covered by any variable xu (xu = 1), then

yj = 1 which will increase the cost function by 1. Thus, Eq. 4.23 minimizes the number of

red RR sets covered and blue RR sets uncovered. ∆-Approximation Algorithm. Our

reformulation of ISI to submodular-cost covering problem is similar to that of the facility

location problem in Section 7 of [61]. According to Lemma 5 in [61], the following greedy

algorithm (Alg. 22) runs in linear time with respect to the total size of all the RR sets and

returns an ∆-approximate solution.

Theorem 23. Alg. 22 returns an ∆-approximate solution for the submodular-cost covering

formulation of the ISI problem, where ∆ is the maximum size of an RR set (thus, ∆ ≤ VI),

and runs in linear time.

The Alg. 22 starts with formulating the submodular-cost covering problem from VI

andR by creating the necessary variables, cost function and constraints as specified previ-

ously. A variable xu is initialized to 0 and gets updated in the iterations that node u is in

the RR set considering in those iterations. The algorithm passes through all the RR sets

Rj ∈ RBlue and makes each of them satisfied in a single iteration in which it calculates

the minimum increase θ of the cost function (Line 4-5) that satisfies the constraint. This

minimum increase is computed by sequentially trying to raise each variable xu : u ∈ Rj
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Algorithm 22: Submodular-cost-Covering
Input: Infected set VI , collection of RR setsR

Output: An ∆-approximate set Ŝ

Formulate the submodular cost covering version fromR

xu = 0, ∀u ∈ VI and yj = 0,∀j : Rj ∈ RBlue

foreach Rj ∈ RBlue do

θ = min
u∈Rj

∑
Rt∈R+

Red(u)

(1−max
v∈Rt

xv)

θ = min{θ, 1− yj}

foreach u ∈ Rj do

if R+
Red(u) = ∅ then
xu = 1

else

xu = 1
|R+
Red(u)|

(
θ +

∑
Rt∈R+

Red(u)

max
v∈Rt

xv
)

end

end

yj = yj + θ

end

Add u into Ŝ if xu = 1

Return Ŝ
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or yj to 1 (covering) and calculating the corresponding cost. Afterwards, it updates each

variable of Rj by an amount that makes the cost function increased by θ (Line 6-11). At

the end, it selects the nodes in VI that have value 1 in their variables (Line 12).

Algorithm 23: SISI Algorithm
Input: Graph G = (V,E), infection probability β, a set of infected nodes VI , an

infection modelM and ε, δ ∈ (0, 1).

Output: Initial infected set Ŝ.

Λ = (1 + ε)2c
[

ln 2
δ

+ k ln 2 + 1
]

1
ε2

T = Λ,R ← ∅

repeat
Generate T additional RR sets by Fast-TRIS (or the reverse sampling in [11,

89] for IC, LT models)

Ŝ = Submodular-cost-Covering(VI ,R)

T = |R|

∆ = maxRj |Rj|

if ε > 1/(1 + ∆) then
ε = 1/(1 + ∆)

Λ = (1 + ε)2c
[

ln 2
δ

+ k ln 2 + 1
]

1
ε2

end

until |R−Blue(Ŝ)|+ |R+
Red(Ŝ)| ≥ Λ;

Post-optimization(Ŝ)

Return Ŝ

4.3.3 SISI Approximation Algorithm

We will describe the approximation algorithm, named SISI, which combines the three

key advanced components: TRIS sampling (Subsec. 4.3.1), the ∆-approximate submodular-
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cost covering algorithm (Subsec. 4.3.2) and a stopping condition in [89], to solve the ISI

problem and returns an ∆ 2
(1−ε)2 -approximate solution with at least (1 − δ)-probability

(proved in Sec. 4.4). The description of SISI is given in Alg. 23.

SISI begins with initializing Λ which will decide the stopping condition (Line 11).

The whole algorithm iterates through multiple steps: in the first step, it generates Λ RR

sets and add them to R since, to satisfy the stopping condition (Line 11), we need at least

Λ RR sets; in subsequent iterations, the algorithm doubles the number of RR sets in R by

generating |R|more. In each iteration, it utilizes the submodular-cost covering algorithm to

find the candidate set Ŝ (Line 5) and check whether we have sufficient statistical evidence

to achieve a good solution by checking the stopping condition (Line 11). The stopping

condition plays a decisive roles in both theoretical solution quality and the complexity of

the algorithm. The condition in SISI is derived from the results of optimal sampling for

Monte-Carlo estimation studied in [26]. In the next section, we will prove that with this

stopping condition, SISI returns an ∆ 2
(1−ε)2 -approximate solution with probability of at

least (1 − δ), where ε, δ are given as inputs. The check in Lines 8-10 is to guarantee ε

small enough and described in Sec. 4.4. At the end of the algorithm, SISI performs a post-

optimization of Ŝ which incrementally removes nodes in Ŝ if that improves the objective

function.

4.4 Algorithm Analysis

We will analyze the approximation guarantee and time complexity of SISI algorithm.

In short, we prove that SISI returns an ∆ 2
(1−ε)2 -approximate solution. In the sequel, we

will present the time complexity of SISI.
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4.4.1 Approximation Guarantee

To prove the approximation guarantee of SISI, we show two intermediate results: 1)

with nΛ

E[D(Ŝ)]
RR sets where Ŝ is the solution returned by SISI, E [D(Ŝ)] = E [D(Ŝ,M, VI)]

for short since theM, VI are fixed, all the sets S ⊂ VI are well approximated fromR with

high probability (Lem. 52) and 2) the actual number of RR sets generated in SISI is greater

than nΛ

E[D(Ŝ)]
with high probability (Lem. 53). Then, combine these results and the property

of submodular-cost covering, we obtain the approximation factor in Theo. 24.

DenoteDR(S) = n
|R|(|R

−
Blue(S)|+|R+

Red(S)|), which is an approximation of E [D(S)],

achieved from the collection of RR setsR. The following lemma states the approximation

quality of a set S ⊆ VI . We assume that E [D(Ŝ)] 6= 0,∀Ŝ ⊂ VI since the case of equaling

0 only happens if VI is a disconnected clique with edge weights being all 1 and then, every

set S ∈ VI are exactly identical. In that case, the sources can be any set of nodes and are

intractable to identify.

Lemma 52. If we have T ∗ = nΛ

E[D(Ŝ)]
RR sets where Ŝ is the solution returned by SISI,

then for a set S ⊆ VI ,

Pr[|DR(S)− E [D(S)]| ≥ ε

√
E [D(S)] · E [D(Ŝ)]] ≤ δ

M

where M = 2k + 1 and k = |VI |.

Proof. First, for a subset S ⊆ VI and a random RR set Rj , recall the binary random

variable Xj in Eq. 4.14 that,

Xj =


1 if Rj ∈ R−Blue(S) ∪R+

Red(S)

0 otherwise.
(4.24)

Thus, the series of RR sets in R corresponds to a sequence of samples of Xj , denoted by

{X1
j , X

2
j , . . . }. Intuitively, since the RR are generated independently, the resulted sample
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sequence of Xj should also be independent and identically distributed in [0, 1]. However,

similar to the Stopping Rule Algorithm in [26] that SISI creates a dependency on the sam-

ples by stopping the algorithm when some condition is satisfied. SISI jumps to the next

round when |R−Blue(Ŝ)| + |R+
Red(Ŝ)| ≥ Λ or

∑|R|
i=1X

i
j ≥ Λ is not met and hence, whether

we generate more samples depending on the current set of RR sets. Interestingly, similar to

the case of Stopping Rule Algorithm in [26], the sequence {X1
j , X

2
j , . . . } forms a martingle

and the following results follow from [26]:

Let X1
j , X

2
j , ... samples according to Xj random variable in the interval [0, 1] with

mean µXj and variance σ2
Xj

form a martingale and µ̂Xj = 1
T

∑T
i=1X

i
j be an estimate of

µXj , for any fixed T > 0, 0 ≥ ε ≥ 1,

Pr[µ̂Xj ≥ (1 + ε)µXj ] ≤ e
−TµXj ε

2

2c (4.25)

and,

Pr[µ̂Xj ≤ (1− ε)µXj ] ≤ e
−TµXj ε

2

2c . (4.26)

Recall that the value of DR(S) is equivalent to,

DR(S) =
n

|R|

|R|∑
i=1

X i
j (4.27)

Denote µ̂S = 1
|R|
∑|R|

i=1X
i
j which is an estimate of µS = 1

n
E [D(S)], then T ∗ = Λ

µŜ
and

the inequality in Lem. 52 can be rewritten,

Pr[|µ̂S − µS| ≥ ε
√
µŜµS] ≤ δ

M
(4.28)

Now, apply the inequality in Eq. 4.26 on the left side of the above Eq. 4.28, we have,

Pr[µ̂S ≤ (1− ε
√
µŜ
µS

)µS] ≤ e
−T∗µSε

2µ
Ŝ

2cµS = e−(ln(2/δ)+k ln 2+1)
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Since k ln 2 + 1 > ln(2k + 1), we obtain,

Pr[µ̂S ≤ µS − ε
√
µŜµS] ≤ δ

2(2k + 1)
=

δ

2M
(4.29)

Similarly, by applying the inequality in Eq. 4.25, we obtain the following,

Pr[µ̂S ≥ µS + ε
√
µŜµS] ≤ δ

2(2k + 1)
=

δ

2M
(4.30)

Combining Eq. 4.29 and Eq. 4.30 proves Lem. 52.

Lem. 52 states that if we have at least T ∗ = nΛ

E[D(Ŝ)]
RR sets then a set S ⊂ VI is ap-

proximated within an additive error of ε√µŜµS with probability (1− δ
M

). As a consequence,

the next lemma shows that SISI generates at least T ∗ RR set, thus the approximation of

S ⊆ VI in SISI is also good.

Lemma 53 (Stopping condition). The number of RR sets generated by SISI when it stops

satisfies,

Pr[|R| ≤ T ∗] ≤ δ

M
(4.31)

Proof. We also define the random variable Xj , samples {X1
j , X

2
j , . . . } for the set Ŝ re-

turned by SISI similar to the proof of Lem. 52. Starting from the left-hand side of Eq. 4.31,

we manipulate as follows,

Pr[|R| ≤ T ∗] = Pr[

|R|∑
i=1

X i
j ≤

T ∗∑
i=1

X i
j] (4.32)

Since |R−Blue(Ŝ)|+ |R+
Red(Ŝ)| =

∑|R|
i=1 X

i
j and SISI stops when |R−Blue(Ŝ)|+ |R+

Red(Ŝ)| ≥
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Λ, Eq. 4.32 is equivalent to,

Pr[|R| ≤ T ∗] ≤ Pr[Λ ≤
T ∗∑
i=1

X i
j] = Pr[

n

T ∗
Λ ≤ n

T ∗

T ∗∑
i=1

X i
j]

= Pr[∆
n

T ∗
Υ(1 + ε) ≤ n

T ∗

T ∗∑
i=1

X i
j] (4.33)

Recall that T ∗ = nΥ

E[D(Ŝ)]
or E [D(Ŝ)] = nΥ

T ∗
and, thus,

Pr[|R| ≤ T ∗] ≤ Pr[E [D(Ŝ)](1 + ε) ≤ n

T ∗

T ∗∑
i=1

X i
j]

= Pr[E [D(Ŝ)](1 + ε) ≤ DT ∗(Ŝ)] (4.34)

From Lem. 52, if we have T ∗ RR sets, we obtain,

Pr[DR(S) ≥ E [D(S)] + ε

√
E [D(S)] · E [D(Ŝ)]] ≤ δ

M

for set S. Replacing S by Ŝ gives,

Pr[DT ∗(Ŝ) ≥ E [D(Ŝ)] + εE [D(Ŝ)]] ≤ δ

M

The left side is exactly the Eq. 4.34 and thus,

Pr[|R| ≤ T ∗] ≤ δ

M
(4.35)

That completes the proof of Lem. 53.

Based on Lem. 52 and Lem. 53, we are sufficient to prove the ∆ 2
(1−ε)2 -approximation

factor of SISI.

Theorem 24. Let OPT = E [D(S∗)] be the optimal value of E [D(S)] at S∗. SISI returns

an ∆ 2
(1−ε)2 -approximate solution Ŝ with probability of at least (1− δ) or,

Pr[E [D(Ŝ)] ≤ ∆
2

(1− ε)2
OPT ] ≥ 1− δ (4.36)
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Proof. From Lem. 52, we obtain,

Pr[|DR(S)− E [D(S)]| ≥ ε

√
E [D(S)] · E [D(Ŝ)]] ≤ δ

M

for a particular subset S ⊆ VI if there are at least T ∗ RR sets. Furthermore, Lem. 53 states

that SISI generates at least T ∗ RR sets with probability at least δ
M

. Taking union bound

over all subsets S ⊆ VI (note that there are 2k such subsets) to the above probability and

the probability of SISI generating at least T ∗ RR sets in Lem. 53, we achieve,

Pr[|DR(S)− E [D(S)]| ≥ ε

√
E [D(S)] · E [D(Ŝ)]] ≤ δ

for every set S. Thus, both

DR(Ŝ) ≥ E [D(Ŝ)]− εE [D(Ŝ)] (4.37)

and

DR(S∗) ≤ OPT + ε

√
OPT · E [D(Ŝ)] (4.38)

happen with probability at least (1 − δ). Plugging DR(Ŝ) ≤ ∆DR(S∗) achieved by

submodular-cost covering to Eq. 4.38,

DR(Ŝ) ≤ ∆(OPT + ε

√
OPT · E [D(Ŝ)]) (4.39)

then combining with Eq. 4.37 gives,

E [D(Ŝ)]− εE [D(Ŝ)] ≤ ∆(OPT + ε

√
OPT · E [D(Ŝ)])

or

E [D(Ŝ)]

OPT
≤ ∆

1− ε− ε∆
√

OPT

E[D(Ŝ)]

(4.40)
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This inequality is valid only when 1 − ε − ε∆
√

OPT

E[D(Ŝ)]
> 0 which means ε < 1/(1 +

∆
√

OPT

E[D(Ŝ)]
). Since ε is a free parameter, we can choose ε ≤ 1/(1 + ∆) and satisfy the

condition. By considering
√
E[D(Ŝ)]
OPT

as a variable and solve the quadratic inequality with

ε ≤ 1/(1 + ∆), we obtain,

E [D(Ŝ)]

OPT
≤ ∆

2

(1− ε)2
(4.41)

which states the ∆ 2
(1−ε)2 approximation factor of SISI and happens with probability at least

(1− δ).

4.4.2 Time Complexity

This subsection analyzes the time complexity of SISI. We analyze major procedures

of the algorithm: 1) submodular-cost covering algorithm and 2) generating RR sets.

4.4.2.1 Submodular-cost covering algorithm

Recall that the total sizes of the generated RR sets is Λ on the average. Since the algo-

rithm for solving the procedure to solve submodular-cost covering problem keeps doubling

the number of RR sets after each round,the total complexity of this procedure is bounded

loosely by O(Λ2).

4.4.2.2 Generating RR sets

To determine the time complexity of generating RR sets in SISI, we need analyze the

time spent for generating a single RR set (Lemma 50) and the expected number of RR sets.

Then multiplying two numbers to get the expected total complexity. The following lemma

states the complexity results with the proof in our extended version [80].

Lemma 54. LetEs be the set of edges connecting nodes in VI to nodes in V̄I , the complexity
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of generating RR sets in SISI is O(mΛ∆/|Es|)

Proof. Generating a RR Set. As analyzed in Sec. 4.3, the expected complexity of generat-

ing a single RR set is as follows,

C ′(Rj) =
∆m

n
+ ∆ log(∆) log(1 +

∆m

n2
) ≈ ∆m

n
(4.42)

Number of RR set generated. We will find an upper-bound for the number of RR sets

generated by SISI. Using Wald’s equation [108], and that E [|R|] <∞ we have

E [|R|]µŜ = Λ (4.43)

Thus,

E [|R|] =
Λ

µŜ
=

Λn

E [D(Ŝ, τ, VI)]
(4.44)

Let Es be the set of edges connecting nodes in VI to nodes in V̄I , then we have

E [D(Ŝ, τ, VI)] ≥
∑

(u,v)∈Es

[
(1− Pr[Ŝ, u]) + Pr[Ŝ, v]

]
(4.45)

where (1 − Pr[Ŝ, u]) is the probability that u ∈ VI is not infected and Pr[Ŝ, v] is the

probability that v ∈ VĪ is infected. Since v is uninfected and connected with u, if u is

infected by Ŝ, then the probability that v gets the infection from u is Pr[Ŝ, v] = β Pr[Ŝ, u].

Taking into the probability that u is infected at least 1 step before τ , we obtain Pr[Ŝ, v] ≥

β Pr[Ŝ, u]/(1− β) due to the binomial distribution of successes up to τ and τ − 1. Thus,

E [D(Ŝ, τ, VI)] ≥
∑

(u,v)∈Es

(1− Pr[Ŝ, u] +
β

1− β
Pr[Ŝ, u])

= |Es| − (1− β

1− β
)
∑

(u,v)∈Es

Pr[Ŝ, u] ≥ β

1− β
|Es| (4.46)
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Combining this result with Eq. 4.44, we obtain,

E [|R|] ≤ (1− β)Λn

β|Es|
(4.47)

From Eq. 4.42 and Eq. 4.47, we obtains the complexity of generating RR sets.

Therefore, the overall complexity of SISI is followed by the subsequent theorem.

Theorem 25. LetEs be the set of edges connecting nodes in VI to V̄I , SISI hasO(m∆Λ/|Es|+

Λ2) time complexity.

From Theo. 25, we see that the complexity depends on the number of connections from

infected set to the outside world |Es|. That is if there are many infected nodes connected to

uninfected nodes, it is easier for SISI to find the sources and vice versus, if only few such

connections, SISI requires more time.

(a) |VI | = 100 (b) |VI | = 500 (c) |VI | = 1000

Fig. 33.: F1-measure scores of different algorithms. Higher is better.
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Fig. 34.: Runtime of the tested algorithms
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4.5 Experiments

In this section, we study the empirical performance of SISI and compare it with the

current state-of-the-art methods under the popular SI and IC infection models. We show

that SISI outperform the others in terms of detection quality, revealing major of the infec-

tion sources. In contrast, the other methods rarely find any true source of the infection.

|VI | 100 500 1000

#sources 1 5 10 20 1 5 10 20 1 5 10 20

Symmetric
Difference
(smaller is
better)

Ground-truth 205 173 156 134 1006 945 938 767 2026 1835 1945 1520
SISI 211 181 168 142 1013 962 971 792 2049 1873 1959 1541
SISI-relax 246 215 218 202 1141 993 1084 854 2179 1903 2012 1696
NETSLEUTH 294 273 280 247 1258 1147 1193 971 2297 2095 2248 1751
Greedy 261 226 231 219 1152 1015 1067 914 2218 2214 2124 1707
Max-Degree 281 325 418 387 1195 1091 1206 1105 2221 2167 2182 1876

Jaccard
Distance
(larger is
better)

Ground-truth 1 1 1 1 1 1 1 1 1 1 1 1
SISI 0.92 0.98 0.96 0.97 0.99 0.95 0.82 0.94 0.96 0.97 0.97 0.95
SISI-relax 0.76 0.72 0.65 0.71 0.81 0.79 0.72 0.89 0.86 0.68 0.72 0.73
NETSLEUTH 0.21 0.24 0.31 0.37 0.16 0.29 0.26 0.41 0.20 0.17 0.18 0.21
Greedy 0.32 0.19 0.39 0.35 0.26 0.28 0.34 0.37 0.22 0.26 0.21 0.19
Max-Degree 0.32 0.35 0.24 0.29 0.24 0.27 0.26 0.18 0.14 0.16 0.17 0.12

Table 25.: Comparison on Symmetric Difference and Jaccard-based Distance of different

methods.

4.5.1 Experimental Settings

4.5.1.1 Algorithms compared

Under the SI model, we compare three groups of methods:

• SISI, a relaxed version of SISI, termed SISI-relax, in which we relax the approxi-

mation guarantee of SISI by replacing (k ln 2) in Υ by a smaller constant ln(2 × k)

and the natural naive Greedy algorithm which iteratively selects one node at a time

that commits the largest marginal decrease of symmetric difference. The purpose of

designing SISI-relax is to test the empirical performance changes if we have fewer
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RR sets.

• NETSLEUTH [97] which is the existing best algorithm in general graphs however it

fails to provide any guarantee on solution quality.

• Max-Degree based method which ranks node degrees and iteratively selects nodes

with highest degree until increasing the symmetric difference as the solution.

Under the IC model, we compare SISI with k-effector [67] and the naive Max-

Degree algorithm on IC model.

For SISI and SISI-relax, we set the parameters ε = 0.1, δ = 0.01. For k-effector, k

is set to the number of true sources.

4.5.1.2 Quality measures

To evaluate the solution quality, we adopt three measures:

• Symmetric difference (E [D(S, τ, VI)]) which is separately calculated with high ac-

curacy (ε = 0.01, δ = 0.001) through generating random RR sets as in Subsection

4.3.1.

• Jaccard distance based QJD [97]:

QJD(S) =
E [JDS(VI)]

E [JDS∗(VI)]
(4.48)

where E [JDS(VI)] is the average Jaccard distance of S w.r.t. VI and computed by

generating many (10000 in our experiments) infection simulations from S and aver-

aging over the Jaccard similarities between the infected sets and VI . S∗ contains the

true sources.
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• F1-measure:

PR(S) =
|S ∩ {true sources}|

2|S|
+
|S ∩ {true sources}|

2|{true sources}|

This accurately captures our ultimate goal of ISI problem: finding both the true

sources and the correct number of sources. We also define true source detection

rate (%) as 100 |S∩{true sources}|
|{true sources}| .

Both QJD(S) and PR(S) are ranging in [0, 1] and larger is better. E [D(S, τ, VI)] is non-

negative and smaller is better.

4.5.1.3 Datasets

For experimental purposes, we select a moderate-size real network - NetHEPT with

15233 nodes and 62796 edges that is actually the largest dataset ever tested on ISI prob-

lem. We comprehensively carry experiments on NetHEPT with various numbers of sources

{1, 5, 10, 20}, chosen uniformly random, and the propagation time τ is chosen so that the

infection sizes reach (or exceed) predefined values in the set {100, 500, 1000}. For each

pair of the two values, we generated 10 random test cases with β = 0.05 and then ran each

method on these random tests and took the average of each quality measure over 10 such

results.

4.5.1.4 Testing Environments

We implement SISI, SISI-relax, Greedy and Max-Degree methods in C++, NET-

SLEUTH is in Matlab code and obtained from the authors of [97]. We experiment on a

Linux machine with an 8 core 2.2 GHz CPU and 100GB RAM.
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4.5.2 Experiments on real network and SI model

Comparing solution quality. The solution quality measured are the true infection

sources discovery rate, symmetric difference (our objective) and Jaccard-based distance

[97]

True source discovery. Fig. 33 reports the F1-measure scores of the tested algorithms.

Note that this score has not been used in previous works [97, 78] since previous methods

can only find nodes that are within few hops from the sources, but not the sources them-

selves. As shown in the figure, SISI and SISI-relax have the best performance. More than

50% of the true sources was discovered by SISI and 35% by SISI-relax that exquisitely

surpass NETSLEUTH, Max-Degree with 0% and Greedy with roughly 10%.

#src SISI SISI-relax NETS. Greedy Max-Degree

1 91.4 84.2 0 14.5 0

5 79.7 53.9 0 15.2 0

10 74.1 52.3 0 11.8 0

20 77.3 56.5 0 9.6 0

Table 26.: True sources detected (%) with |VI | = 1000.

We also present the true source detected rates of different methods in Tab. 26 since this

is an important aspect (positive rate) of ISI problem. The table shows accurate detection of

SISI and SISI-relax. More than 70% and 50% of true sources are identified by SISI and

SISI-relax respectively while NETSLEUTH and Max-Degree cannot detect any source.

Symmetric difference. Tab. 25 shows the E [D(S, τ, VI)] values where S is the returned

solution of each algorithm with various number of true sources and sizes of infection cas-

cades. In all the cases, SISI largely outperforms the other methods and obtains very close
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values to the true sources. The superiority of SISI against the SISI-relax and Greedy

confirms the good solution guarantee of SISI. NETSLEUTH and Max-Degree optimize

different criteria, i.e., description length (MDL) and node degree, and thus show poor per-

formance in terms of symmetric difference. SISI-relax is consistently the second best

method and preserves very well the performance of SISI.

Jaccard distance. We use QJD(S) as in [97] to evaluate the algorithms and plot the

results in Tab. 25. In this case, the closer value of QJD(S) to 1 indicates better solution. In

terms of QJD(S), we observe the similar phenomena as measured by symmetric difference

that SISI achieve drastically better solution than the others and the results of SISI-relax

approach those of SISI very well with much fewer RR sets.

Comparing running time. Fig. 34 illustrates the running time of the algorithms in

the previous experiments. We see that SISI is slower than NETSLEUTH and SISI-relax

but the differences are minor while it provides by far better accuracy than other algorithms.

SISI-relax obtains possibly the best balance among all: faster than NETSLEUTH and

providing good solution quality as shown previously.

4.5.3 Experiments on the IC model

Set up. We compare SISI with the dynamic programming algorithm, temporarily

called k-effector, in [67] when the infection process follows the IC model. Similar to other

experiments, we simulate the infection process under the IC model with 4 different numbers

of sources, i.e., 1, 5, 10, 20 and run SISI and k-effector on the resulting cascades. For each

setting, we carry 10 simulations and report the average results. Note that the solution for

k-effector in [67] requires the number of sources as an additional input parameter and for

simplicity, we provide the true number of sources used in the simulation processes. SISI,

however, do not require this information. We report the results in Table 27.

Results. It is clear from Table 27 that SISI massively outperforms k-effector in terms
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#src
Symmetric Difference F1-measure

SISI k-effector Max-Deg. SISI k-effector Max-Deg.

1 6.6 18.4 42.3 0.57 0 0.02

5 55.1 103.4 176.9 0.53 0.02 0

10 25.2 72.6 154.1 0.49 0.03 0

20 203.7 295.2 384.7 0.52 0.05 0.03

Table 27.: Comparison under the IC model.

of both symmetric difference and true source recovering ability. In summary, for any value

of the number of true sources k, SISI always returns solution with symmetric difference

equal half of the one returned by k-effector. In terms of true source discovery ability,

while k-effector almost detects none of the true sources, SISI consistently achieves the

F1-measure of at least 50%.

4.6 Discussion and Conclusion

We present SISI the first approximation algorithm for multiple source detection in

general graphs which also works very well in practice. The algorithm can be extended to

several other diffusion models and settings with little modification on the sampling proce-

dure as outlined below.

Incomplete Observation [36, 53]. In many cases, we can only observe the states

(infected/not infected) for a subset O ( V of nodes in the network. In those cases, we

need to modify the Fast TRIS sampling Algorithm in Line 1 and pick a node u uniformly

in O (instead of V ) and allow the sources to be from VI or unknown state nodes.

However, the SISI cannot be directly adapted to non-progessive models in which a

node can switch from an infected state into uninfected state. Thus approximation algorithm
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for source detection in non-progressive models leaves an open question and is among our

future work.
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CHAPTER 5

COMMUNITY DETECTION

Community detection which partitions a network into possibly overlapping groups of nodes

is a large topic in network science and found numerous applications in biology, e.g., finding

function groupings, e-commerce, e.g., product recommendations, and many more. Despite

a large research effort from diverse fields, e.g., computer science, computational physics,

information theory, the efficiency of finding community structure is still below satisfaction.

We propose to boost up this low performance by combining additional sources of data with

the traditional network topology. In particular, we propose to detect communities across

different networks sharing some portion of common users. The second idea is to combine

the available node attribute information with the topology and cluster them together. We

combine these ideas with the emerging Non-negative Matrix Factorization technique to

propose efficient algorithms. We will sequentially present these works in the subsequent

sections.

5.1 Non-negative Matrix Factorization (NMF)

Nonnegative matrix factorization (NMF) was first introduced by Paatero and Tapper

and popularized by Lee and Seung [68]. The main idea is to approximate a nonnegative ma-

trix V by the product of two nonnegative matrix factors W and H. Due to natural nonnega-

tive property of the factorization, those works started a massive flow of researches covering

a wide range of area, i.e., text mining, spectral data analysis, speech denoising, bioinfor-

matics and many more [59]. Recently in social science, Lin et al. presented MetaFac [73]

which uses relational hypergraph representation and tensor factorization. Wang et al. sub-
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sequently used NMF algorithm and proposed three NMF solutions [110] for undirected,

directed networks and compound networks of different entities (users and movies). Unfor-

tunately, the method cannot be adapted for multiplex OSNs which have single entity type

and multiple entities in different networks may refer to a same person.

5.2 Community Detection in Multiplex Social Networks

Summary of contributions:

• We propose and compare two classes of approaches. The first class, named unifying

approach, finds a consistent CS in the networks by aggregating multiple accounts of

the same users. The second class finds mostly consistent CSs in the network using

coupling techniques. We also develop specialized NMF-based method for each class.

• We extend the LFR benchmark [66] to create a new benchmark for community de-

tection in multiplex OSNs. The new extension is capable of generating layers with

varying node’s degree distribution and the fraction between links inside and outside

communities.

• We carry intensive experiments on synthesized data. The results suggest that our

approaches outperform the naive approach of finding CS in each network separately.

5.2.1 Problem formulation

We model multiplex OSNs as a collection G of graphs. G consists of p layers or p

single networks. Layer i is abbreviated by Gi = (Vi, Ei) where Vi and Ei are the set of

nodes and the set of edges, respectively in that layer. Note that a node can appear in one or

multiple layers. We define set V =
⋃p
i=1 Vi and n = |V | - the capacity of set V . Now, we

can represent each layer in matrix form: Ai is an n × n adjacency matrix of Gi. A three

layer OSN is illustrated in Fig. 35.
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Fig. 35.: A toy example of 7 users participating in three OSNs, namely Facebook, Twitter

and LinkedIn. If we analyze each layer separately, node 3 can be grouped with node 1

and 2 or with 4 and 5 in Facebook network. However, with the information from Twitter,

we can surely assign node 3 to the same community with nodes 1, 2. From LinkedIn, we

obtain one more structural information that nodes 3, 4, 5, 6, 7 should be in the same group.

Assume there exist k communities in layer i. We model the interaction (Ai)uv be-

tween nodes u and v in layer i by a mixture model of combined effect due to all the k

communities. That is, we approximate (Ai)uv using (Ai)uv =
∑

m,l pmlpm→upl→v where

pml is the interaction density between communities m and l, pm→u and pl→v are the prob-

abilities that an interaction with communities m and l involves node u and v, respectively.

Written in matrix form, we have Ai = XiSiXT
i where Xi is a non-negative matrix with

(Xi)um = pm→u, Si is also a non-negative matrix with (Si)ml = pml. Our goal is to find the

CS which can be represented as a n× k matrix Xi for each layer i where each row reflects

the community membership for an user. (Xi)um reveals the strength of participation of user

u to community m. This representation can be used for either overlapping or disjoint CS.

The latter, disjoint CS, is the focus of this paper.

Central assumption. If nodes u, v are in the same community in a layer, they are

more likely to belong a community in the other layers. Based on how strictly we enforce

this assumption, we derive two classes of approaches:
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Unifying approach: We force the instances of an user in different layers to be in the

same community by aggregating all the layers into a single network where multiple in-

stances appear as a node in aggregated network.

Coupling approach: We relax the enforcement by using coupling schema. Instead of

forcing instances of a node, we suggest them to be in the same community by creating a

coupling edges between matching pairs of instances.

5.2.2 Unifying approach

In this section, we present the unifying approach which finds a single CS for all layers.

We consider two directions: 1) Convert multiple layers to one layer network and apply

existing algorithms and 2) Adapt NMF algorithm on the original networks.

5.2.2.1 Network aggregation

To apply existing algorithms for multiplex OSNs, we need to: 1) Aggregate all layers

into a single network Gc, 2) Apply existing CS algorithms, e.g., Louvain [10], Infomap

[100], to find CS in Gc, 3) Project the found CS back onto each layer to find their CSs.

Given a multiple layer network G as defined in problem formulation section, the ag-

gregated network [59] is denoted as Gc = (V,Ec) where Ec = (E1 ∪ E2 ∪ ... ∪ Ep) and

E1, E2, ..., Ep are edge sets in the layers.

Now, we can obviously use algorithms for single networks on aggregated networks.

However, the aggregation discloses itself several shortcomings, i.e., the edge types in the

layers may be different from each other or some layers are weighted but the others are

unweighted. Those characteristics make it difficult to aggregate the layers. Therefore, we

propose the NMF-based algorithm on the original multiple layer networks.
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5.2.2.2 NMF-based algorithm on the original networks

We present NMF-based algorithms for both directed and undirected networks.

Directed networks. We attempt to find a community membership matrix X that agrees

with the structures of the given networks. Specifically, we want to minimize the sum of

difference between XSXT and the matrices Ai, i = 1..p. Here S shows the connectivity be-

tween communities. Then, the community detection problem can be cast to a nonnegative

matrix factorization problem. Therefore, we obtain the following objective function

min
X≥0,S≥0

p∑
i=1

d(Ai‖XSXT ), (5.1)

where d(A‖B) is the measure for difference between two matrices. In the literature,

we have seen two most popular and well-studied measures, the former is called the square

of the Euclidean distance [68]

‖A− B‖2
F =

∑
i,j

(Aij −Bij)
2. (5.2)

Similarly, the second measure named Kullback-Leibler divergence (KL-divergence)

[68] of A from B is defined as

D(A‖B) =
∑
i,j

(Aij log
Aij
Bij

− Aij +Bij). (5.3)

Using KL-divergence. The cost function using KL-divergence is as follows

min
X≥0,S≥0

L =

p∑
i=1

D(Ai‖XSXT ). (5.4)
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We derive the update rules following the framework in [68]

Xjk = Xjk

(∑p
i=1

∑
l(Ai)lj(XS)lk/(XSXT )lj

p
(∑

t((XS)tk + (SXT )kt)
) +

∑p
i=1

∑
l(Ai)jl(SXT )kl/(XSXT )jl

p
(∑

t((XS)tk + (SXT )kt)
) )

,

(5.5)

Sjk = Sjk

(∑p
i=1

∑
s,t(Ai)stXsjXtk/(XSXT )st

p (
∑

stXsjXtk)

)
. (5.6)

Algorithm 24: NMF-based algorithm for directed networks using KL-divergence
Input: Adjacency matrices {Ai|i = 1..p}, max iterations T

Output: Membership matrix X

Assign Xij, Sij (uniformly) random values in [0,1]

repeat
Update Xjk following Eq. 5.5

Update Sjk following Eq. 5.6

until Convergence or after T iterations;

For each row i, argmaxj{Xij} is the community that node i is assigned to

Return the list of communities corresponding to the nodes

Alg. 25 depicts NMF-based algorithms for directed networks using KL-divergence in

unifying approach. The main segment is the updating procedure where Xjk and Sjk gets

updated in each iteration until convergence or after T updates. Row i of matrix X shows the

participation of user i in all the communities. Therefore, we assign user i to the community

corresponding to the largest value in Xi, if there several such communities, choose the first

one.

To find the number of communities k, we adopt one of the most popular approaches

used in [115]. We choose k at which the modularity function Q achieves the maximum
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(see [82] for more details).

Theorem 26. The value of the objective function in Eq. 4 is non-increasing and converged

to an local minimum under the updates rules in Eq. 5.5 and Eq. 5.6.

Proof. We will show that X and S converge and the convergence point is a local minimum.

Convergence: To prove the convergence, we need to find the auxiliary functions for X

and S that lead to the update rules. We define the following auxiliary functions Q(X, X̃)

and Q(S, S̃):

Q(X, X̃) =

p∑
i=1

(∑
jk

(Ai)jk (log(Ai)jk − 1) +
1

2

∑
jk

(
(YSX̃T

)jk + (X̃SYT )jk

))
−

p∑
i=1

(∑
jk

(Ai)jk
∑
uv

ηjkuv (log(XjvSvuXku)− log(ηjkuv))
)
,

Q(S, S̃) =

p∑
i=1

(∑
jk

(Ai)jk (log(Ai)jk − 1) +
∑
jk

(XSXT )jk

)
−

p∑
i=1

(∑
jk

(Ai)jk
∑
uv

βjkuv (log(XjvSvuXku)− log(βjkuv))
)
.

where

βjkuv =
XjvS̃vuXku∑
s,tXjtS̃tsXks

, ηjkuv =
XjvSvuX̃ku∑
s,tXjtStsX̃ks

, Yij =
Xij

X̃ij

.

Then, we only need to verify that Q(X, X̃) ≥ F (X) and Q(S, S̃) ≥ F (S). The second

summation of these inequalities are equivalent (with substitution of βjkuv to ηjkuv) to

− log(
∑
u,v

βjkuv
XjvSvuXku

βjkuv
) ≤ −

∑
u,v

βjkuv log(
XjvSvuXku

βjkuv
),

which holds due to Jensen’s inequality [68] and the convexity of logarithmic function. So,

we can verify Q(S, S̃) ≥ F (S).
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We also have 1
2
(YSX̃T

)jk + 1
2
(X̃SYT )jk ≥ (XSXT )jk and that makes the inequality

Q(X, X̃) ≥ F (X) satisfied. Then, taking the derivatives of Q(X, X̃) and Q(S, S̃), we get

the update rules.

Local minimum: We need to point out that the update rules satisfy the KKT slackness

conditions [68].

Introducing the Lagrangian multipliers αjk and βjk to the loss function L , we have

J =

p∑
i=1

D(Ai‖XSXT ) =

p∑
i=1

∑
j,k

((Ai)jk log
(Ai)jk

(XSXT )jk

− (Ai)jk + (XSXT )jk) +
∑
j,k

αjkXjk +
∑
j,k

βjkSjk.

Take the derivatives of J in terms of Xjk and Sjk

δJ

δXjk

=

p∑
i=1

(
−
∑
l

(Ai)lj(XS)lk

(XSXT )lj
−
∑
l

(Ai)jl(XS)kl

(XSXT )jl
+
∑
t

((XS)tk + (SXT )kt)
)
− αjk,

δJ

δSjk
=

p∑
i=1

(
−
∑
s,t

(Ai)stXsjXtk

(XSXT )st
+
∑
st

XsjXtk

)
− βjk.

Following the KKT slackness conditions, we get

δJ

δXjk

=

p∑
i=1

(
−
∑
l

(Ai)lj(XS)lk

(XSXT )lj
−
∑
l

(Ai)jl(XS)kl

(XSXT )jl
+
∑
t

((XS)tk + (SXT )kt)− αjk

)
Xjk = 0,

δJ

δSjk
=

p∑
i=1

(
−
∑
s,t

(Ai)stXsjXtk

(XSXT )st
+
∑
st

XsjXtk − βjk

)
Sjk = 0.

Then, we can see that the update rules satisfy the above conditions or X and S will converge

to a local minimum. Since matrices Ai, S, and X are all nonnegative during the updating

process, the final X and S will also be nonnegative.

Using Euclidean distance We can also use the Euclidean distance and obtain the cor-
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responding cost function

min
X≥0,S≥0

(

p∑
i=1

‖Ai − XSXT‖2
F ). (5.7)

Theorem 27. The value of the objective function in Eq. 5.7 is non-increasing and con-

verged to an local minimum under the following updates rules

Xjk = Xjk

( ∑p
i=1[AT

i XS + AiXST ]jk

p[XSXTXST + XSTXTXS]jk

)1/4

, (5.8)

Sjk = Sjk

(∑p
i=1[XTAiX]jk

p[XTXSXTS]jk

)
. (5.9)

We omit the proof of the Theorem 2 due to space limit.

Undirected networks. The problem in undirected networks is actually a special case of

that problem in directed network. The adjacency matrix for each layer is symmetric, we,

therefore, factorize Ai = XXT and then formulate the resulting problem as:

Using KL-divergence version

min
X≥0

p∑
i=1

D(Ai‖XXT ) (5.10)

with the simplified update rule only for matrix X

Xjk = Xjk

(∑p
i=1

∑
l(Ai)ljXlk/(XXT )lj
p (
∑

tXtk)

)
. (5.11)

Using Euclidean distance version

min
X≥0,S≥0

p∑
i=1

‖Ai − XXT‖2
F (5.12)
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with the corresponding update rule

Xjk = Xjk

(∑p
i=1[AT

i X]jk

p[XXTX]jk

)1/4

. (5.13)

5.2.3 Coupling approach

5.2.3.1 Coupling techniques

To suggest instances of a node in multiple networks being in the same community, we

create coupling edges between them and construct coupled networks. We investigate four

basic coupling schema [59], namely diagonal, categorical, star and full couplings. In the

article [90], the authors apply two variants of star and aggregated couplings in the context

of least cost influence problem. They named lossless and lossy coupling schema for two

variants, the former is constructed by creating gateway vertices as an intermediate layer

similar to star coupling, whereas aggregation is used for the latter. However, they made

some modifications to adapt in diffusion process, i.e. defining weights and thresholds.

Diagonal coupling [59]: Given two layers Gi and Gi+1, if two nodes u ∈ Gi and

v ∈ Gi+1 belong to an entity, there exists a coupling edges (u, v).

Categorical coupling [59]: For any pair of layers Gi and Gj , if two nodes u ∈ Gi and

v ∈ Gj belong to an entity, there exists a coupling edges (u, v).

Star coupling [59]: We add another intermediate layer Gp+1 = (V,E ′) in which E ′ is

empty and we connect each node in Gp+1 to all nodes belonging to the same entity in all

other layers.

Full coupling [59]: For two adjacent layers Gi = (V,Ei) and Gi+1 = (V,Ei+1),

if there is an edge (u, v) ∈ (Ei ∪ Ei+1), we have coupling edges (ui, vi+1) where ui ∈

Gi, vi+1 ∈ Gi+1 and (ui+1, vi) where ui+1 ∈ Gi+1, vi ∈ Gi.

With the knowledge of coupling, besides matrices Ai with i = 1..p, we introduce

matrices Aij representing coupling connections between layers i and j.
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5.2.3.2 Directed networks

To find CS in multiplex OSNs using coupling approach, we do: 1) build coupled

network by a coupling scheme, then 2) apply a CS detection algorithm on coupled network

and 3) extract CS.

After constructing the coupled networks, we can simply apply existing algorithms for

single networks that have an apparent advantage of requiring less effort. Let us take NMF

as an example with the cost function

min
X≥0,S≥0

(A‖XSXT ), (5.14)

where A is the giant (n×p)× (n×p) adjacency matrix for the coupled network. However,

we observe that matrix A is very sparse because it only contains Ai and Aij as its’ building

blocks. Therefore, we can take advantage of that structure and have the following NMF

problem under KL-divergence

min
Xi≥0 ∀i,S≥0

∑
i

D(Ai‖XiSXT
i ) +

∑
i,j

D′(Aij‖XiSXT
j ), (5.15)

where D′(A‖B) =
∑

Ast 6=0

(
Ast log Ast

Bst
− Ast +Bst

)
. The first summation corresponds

to each layer separately, whereas the second one takes into account the couplings.

Theorem 28. The value of the objective function in Eq. 5.15 is non-increasing and con-
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verged to an local minimum under the following updates rules

(Xi)uv = (Xi)uv

(∑
k

( (Ai)uk

(XiSXT
i )uk

(SXT
i )vk

+
(Ai)ku

(XiSXT
i )ku

(XiS)kv

)
+
∑
j

( (Aij)uu

(XiSXT
j )uu

(SXT
j )vu

+
(Aji)uu

(XjSXT
i )uu

(XjS)uv

))/(∑
k

(
(SXi)vk + (XiS)kv

)
+
∑
j

(
(SXT

j )vu + (XjS)uv

))
, (5.16)

Suv = Suv

( ∑
i

∑
p,q(Ai)pq(Xi)pu(Xi)qv/(XiSXT

i )pq∑
i

∑
pq(Xi)pu(Xi)qv +

∑
i,j

∑
k(Xi)ku(Xi)kv

+

∑
i,j

∑
k(Aij)kk(Xi)ku(Xi)kv/(XiSXT

j )kk∑
i

∑
pq(Xi)pu(Xi)qv +

∑
i,j

∑
k(Xi)ku(Xi)kv

)
. (5.17)

The proof the theorem are highly similar to those of unifying approach and is skipped

to save space.

5.2.3.3 Undirected networks

The problem for undirected networks can be formulated as

min
Xi≥0 ∀i,S≥0

∑
i

D(Ai‖XiXT
i ) +

∑
i,j

D′(Aij‖XiXT
j ), (5.18)

which is also a special case of problem for directed networks when S is an identity matrix.

We, therefore, treat them in the same way and obtain the below update rule

(Xi)uv =(Xi)uv

(∑
k(Ai)uk(Xi)kv/(XiXT

i )ku∑
k(Xi)kv +

∑
j(Xj)uv

+

∑
j(Aji)uu(Xj)uv/(XjXT

i )uu∑
k(Xi)kv +

∑
j(Xj)uv

)
. (5.19)
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5.2.4 Experiments

In this section, we compare different algorithms and coupling schema. Specifically, we

will represent how to modify the LFR bechmark [66] to create multiplex OSNs. We, then,

run our NMF-based algorithms and two of the best algorithms for single network, namely

Infomap [100] and Louvain [10] on coupled networks when varying the fraction of out-

community-degree over total degree of each node and simultaneously changing the average

node degree in each layer. We also test the algorithms on each layer without coupling to

evaluate the superior of coupling techniques in multiplex OSNs.

Normalized Mutual Information (NMI) score [28] is used as the measurement for ac-

curacy. In coupling approach, each layer has a CS and we compute NMI score for multiple

networks at once by combining all the nodes in all the layers to a single CS and compute

NMI score on that CS.

5.2.4.1 Extend LFR bechmark

LFR benchmark [66] was proposed by Lancichinetti et. al. in 2008 that takes into

account the power law property of node degree and community size with tunable exponents.

The procedure of original benchmark goes through three fundamental stages:

1 Assigning degree for each node that obeys the power-law distribution with provided

exponent.

2 Assigning nodes to communities in the sense that the number of nodes in commu-

nities also follows power-law distribution with another given exponent. At the same

time, the method determines the in-community-degree and out-community-degree of

each node to satisfy the required fraction µ.

3 Drawing random edges with the specified degrees.
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Unfortunately, the LFR benchmark is unable of generating multiplex OSNs. LFR

generates single networks with totally different CS each time it runs even with identical

parameters. Therefore, we make some changes to support multilayer feature while still

preserving the important power law characteristics.

The point where we can alter the LFR benchmark is after step 2 when we have already

assigned nodes to communities. To change the average node degree in each layer, we

multiply the nodes’ in-community-degree and out-community-degree with the ratio of the

desired average degree to calculated average degree from the procedure. Thus, we can

generate many layers with the same CS and different nodes’ average degrees in each layer.

5.2.4.2 Dataset and Settings

We create four types of networks which are specified by the directed and weighted

properties. For each network type, we subsequently generate 5 three-layer networks with

1000 nodes, when node average degrees in layers are (5, 5, 5); (15, 15 ,15); (20, 20, 20);

(25, 25, 25); (15, 20, 25) respectively.

In reality, we may not know exactly whether two accounts in different OSNs belong

to same user. Therefore, when coupling two layers, we can only connect p% out of all

the vertices. For the testing dataset, we generate coupled networks when p = 100% and

p = 20%.

All the experiments are carried on undirected unweighted networks, the results for

three other network types are similar and put in supplementary materials. We use a Linux

system running on an Intel CPU Core Dual 3 GHz, 4 GB RAM machine as the testing

environment.

5.2.4.3 Experimental results

We use the following captions to simplify the figures.
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Fig. 36.: NMI scores on network with p = 100%.

Comparison of the algorithms. Figs. 36 and 37 present the MNI scores for all the

algorithms with varying nodes’ average degrees and mixing parameters µ in undirected

unweighted networks. Consistently through all three experiments, NMF-based algorithms

always give the highest NMIs and remain stable in all network’s settings. Infomap relies

heavily on the type of coupling, i.e. performing as well as NMF-based algorithms on aggre-

gated networks and full-coupled networks but extremely poorly on other coupled networks.

Meanwhile, Louvain’s results lie in the middle of two other methods on all the datasets.

Comparison of coupling schema. Observations on coupling schema used, we see
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Fig. 37.: NMI scores on network with p = 20%.

that aggregated and full-coupled networks support best for all the algorithms with high-

est NMI measures. Diagonal-coupled, categorical-coupled and star-coupled networks are

only suitable for NMF-based algorithms when having identical behavior as running on ag-

gregated or full-coupled networks. However, the results on these networks for Infomap

approach 0 quickly even with very small value of mixing parameters.

Comparison of coupling and non-coupling. By non-coupling we refer to the ap-

proach that find CS in each layer separately. We run the three algorithms on networks

without coupling and with full-coupling, the results are reported in Fig. 38. We can easily

see that, for the same algorithm, running on coupled network gives better result, especially

in case of NMF-based algorithm. From a general view, NMF-based algorithm show the

best accuracy in term of NMI score before µ reaches 0.7. Whereas Fig. 39 shows the

results when we keep µ = 0.3 and change p. We see that NMF-based algorithm on cou-

pled network is by far better than the others, for Infomap and Louvain, running on coupled

networks get better than non-coupled cases when p ≥ 0.3.

In summary, NMF-based algorithms show the best results and can be used in all the
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Fig. 38.: Quality of detection with different mixing parameters (p = 20%)
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Fig. 39.: Quality of detection with different matching fractions (µ = 0.3)

classes of multiplex OSNs. Louvain achieves good stability and medium accuracy when

compared to NMF. Although Infomap works very well on full-coupled and aggregated net-

works, it is not an acceptable candidate on diagonal, categorical and star-coupled networks.

5.2.5 Conclusions

In this work, we investigate the community detection problem in multiplex OSNs.

We propose and compare two classes of approaches, namely unifying and coupling, where

we develop a specialization based on NMF algorithm for each approach. The intensive

experiments show that NMF-based algorithms perform consistently and give better results
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compared to Infomap and Louvain in our benchmark. Although Infomap and Louvain only

work well on aggregated and full-coupled networks, they run much faster than NMF-based

algorithms.

5.3 Community Detection in Multi-attributed Networks

Summary of contributions:

• We propose a new generative model that describes the formation of topological edges

and attribute values in relation with CS. We, consequently, define finding overlapping

communities as an optimization problem using NMF framework and develop 3NCD

algorithm.

• We prove the convergence and provide efficient update procedure in order to speed

up the computational process by a factor of n compared to the straightforward im-

plementation of the update rules.

• We carry intensive experiments on three online social network collections with known

ground-truth communities. The results show the superior performance of 3NCD in

terms of both accuracy and running time compared to the best current methods.

5.3.1 Models and problem formulation

In this section, we will describe the proposed generative model and the corresponding

problem formulation. Here, the network is given as a graph with node attributes, G =

(V,E, T,P) where V = {v1, ..., vn} is the set of nodes, E = {(u, v)|u, v ∈ V } is the

set of edges, T is the set of attributes {a1, ..., ap} and P is a matrix in which Pva indicates

whether node v has attributes a (1 means yes and 0 otherwise). More specifically, the graph

is encoded as an adjacency matrix A where the topological interaction between u and v is

272



www.manaraa.com

Table 28.: Abbreviation Table

Abbreviations Explanations

A Aua = 1 if there is an edge from u to v; 0 otherwise

P Pua = 1 if node u has attribute a; 0 otherwise

X Xuc is the probability of node u belonging to community c

S Scc is the probability of an edge having an end in c

H Hca is the likelihood of a node in c having attribute a

V Set of nodes in a network

E Set of edges in a network

T Set of attributes in a network

u, v Nodes in the graph

k, c Number of communities and the index of a community

indicated by the element Auv. Within this paper, we use the abbreviations as described in

Table 28.

Generative model: How community structure affects the formation of links and

node attributes.

In the model, we assume that there are k communities. We define pc as the edge density

of community c in the sense that a random edge will be in community c with probability

pc. In addition, pc→u denotes the probability that an edge in community c involves node u

and pc←a represents the probability of a node in community c having attribute a.

Link formation. The complete generative model is demonstrated in Fig. 40. We use a

mixture model of combined effect due to all the k communities to describe the link forma-

tion. That is, we approximate Auv using the equation Auv =
∑k

c=1 pcpc→upc→v. Written in

matrix form, we obtain A = XSXT where Xuc = pc→u and Scc = pc with the constraint
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Fig. 40.: Combination model of topology and node attributes with CS: (1) the original

graph with 7 nodes V = {v1, ..., v7}, two communities {C1,C2} and three node attributes

T = {a1, a2, a3}, (2) the tripartite graph describing relationships between nodes, commu-

nities and attributes, (3) generative formula for A34 (the expected number of edge between

nodes 3 and 4) and P31 (the likelihood of node 3 having attribute a1).

that both X and S are non-negative.

Attribute formation. A mixture model, Pua =
∑k

c=1 pc→upc←a, is used to model the at-

tribute formation. Alternatively, the model is represented in matrix decomposition perspec-

tive as P = XH where X is the same matrix used in modeling topology and Hca = pc←a.

Therefore, our model contains three matrices, X, S and H as hidden parameters and they

are all non-negative.

Problem definition. Community detection is formulated as the following NMF prob-

lem.

min
X,S,H≥0

d(A‖XSXT ) + d(P‖XH), (5.20)

where d(A‖B) measures the difference between A and B.

In this work, we use the popular KL-divergence [68] with a slight modification for

measurement purpose. More precisely, we ignore the self-loops in the networks and the
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measure is defined as,

D′(A‖B) =
∑
i 6=j

(
Aij. log

Aij
Bij

+ Aij −Bij

)
5.3.2 Methods

We propose 3NCD, our joint NMF method to co-factorize A and P in III. A. Since

it is most important for an NMF algorithm to guarantee both the convergence and the

efficient implementation, we show, in III. B, that 3NCD converges to a KKT stationary

point and its adaptive update strategy reduces the time-complexity from O(kn3) to O(kn2)

in an iteration, where k is the number of communities, compared to the straightforward

implementation.

5.3.2.1 3NCD Algorithm

Alg. 25 describes 3NCD iterative algorithm for community detection which combines

topological and node attribute information. At the beginning, all the elements of the fac-

tor matrices, X, S and H, are initialized with uniformly random values in [0, 1]. The main

loop keeps updating matrix X, diagonal of matrix S and matrix H until convergence. Fi-

nally, we assign node u to community c if Xuc ≥
∑
v∈V Xvc
n

and return all the community

memberships {Cu|u ∈ V }.

During the updating process, we do some pre-computation (Lines 3, 6) to speed up

the procedure as analyzed in Subsection III. C. Til this point, the most important question

left open is how we derive the update rules for X, S and H as performed in Lines 4-8 of

Alg. 25.

Update rules. Based on the observations from previous applications of NMF method

[68, 73, 110], we can compose a general framework for constructing the update rules and

proving their convergence property. The framework has the central point of finding the
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Algorithm 25: 3NCD algorithm for overlapping community detection combining

topology and node attributes.
Input: A network G = {V,E, T,P} and a parameter ε

Output: Community memberships {Cu|u ∈ V }

Assign Xuv, Scc, Hci (uniformly) random values in [0,1]

repeat
Pre-compute XS, Aij

(XSX)ij
, Pic

(XH)ic
for all i, j, c

for i = 1 : n do
Update row i of X using Eq. 5.22

Update XS, Aij
(XSX)ij

, Pic
(XH)ic

accordingly

end

Updates S and H using Eq. 5.23

until ‖Xupdated −Xprevious‖ ≤ ε;

The communities, that node u is assigned to, are the set Cu = {c|Xuc ≥
∑
v∈V Xvc
n

}

Return Community memberships {Cu|u ∈ V }
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auxiliary function Q(X, X̃) of F (X) satisfying the conditions,

Q(X, X̃) ≥ F (X), Q(X,X) = F (X). (5.21)

Then, taking the derivative of Q(X, X̃) with respect to Xuv, we establish the updating rules

for each Xuv by representing Xuv as an equation of X̃uv. After that, the whole matrix

X can be updated simultaneously. However, constructing function Q(X, X̃) is a difficult

task. Our purposes of constructing function Q(X, X̃) are two-fold: We are not only finding

any function Q(X, X̃) satisfying the conditions in Eq. 5.21, but also selecting the one that

derives concise update rules.

In our problem, three factor matrices, i.e. X, S and H, need to be updated. From Eq.

5.20, the objective function depends linearly on either S or H and, thus, the update rules

for these two matrices can be constructed similarly to that in [68, 110]. However, for X,

it cannot be derived by simply imitating the framework and requires some delicate obser-

vation. What happens when we directly apply the framework is encountering a quadratic

equation without guarantee to obtain a non-negative minimum. In Eq. 5.20, we observe

that the objective is quadratic with respect to X but linear in terms of Xu (row uth of X).

Hence, the matrix X can be updated in row manner.

Based on the above observation, we derive the following update rules,

Xuv = Xuv

( ∑
k 6=u

[
Auk(SXT )vk
(XSXT )uk

+ Aku(XS)kv
(XSX)ku

]
∑

k 6=u

[
(SXT )vk + (XS)kv

]
+
∑a

k=1 Hvk

+

∑a
k=1

PukHvk
(XH)uk∑

k 6=u

[
(SXT )vk + (XS)kv

]
+
∑a

k=1 Hvk

)
,

(5.22)

Scc = Scc

∑
u6=v

AuvXucXvc
(XSXT )uv∑

u6=vXucXvc

, Hci = Hci

∑
k
PkiXkc
(XH)ki∑
kXkc

. (5.23)

To find the number of communities k, we adopt the modularity maximization approach

(see [82] for more details). We choose k at which the modularity function Q achieves the
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maximum value.

5.3.2.2 Proof of convergence to a KKT stationary point

The convergence analysis plays a decisive role for the success of any iterative algo-

rithm since we want it to converge at a minimum solution but anywhere else. Auxiliary

function lies in the heart of the whole analysis, however, there is no standard way to find

such functions. Finding a correct and concise auxiliary function requires subtle observa-

tions of the objective and a degree of shape reasoning. In the following, we will state the

convergence property and prove it by constructing auxiliary functions.

Theorem 29. The value of the objective function in Eq. 5.20 is non-increasing and con-

verged to a stationary point under the updating rules in Eq. 5.22 and Eq. 5.23.

Proof of Convergence. To prove the convergence property of the update rules, we need

to find the auxiliary functions for each row of X, matrix S and H that lead to the stated rules.

We define the auxiliary functions for each matrix as follows:

Auxiliary function for Xu:

Q(Xu, X̃u) =
∑
v 6=u

(
Auv(log(Auv)− 1) + (XSXT )uv

)
−
∑
v 6=u

Auv
∑
c

ηvc

(
log(Xuc(SXT )cv)− log(ηvc)

)
+
∑
i

(
Pui(log(Pui − 1))− (XH)ui

)
−
∑
i

Pui
∑
c

βic

(
log(XucHci)− log(βic)

)
(5.24)

where ηvc = X̃uc(SXT )cv∑
j X̃uj(SXT )jv

, βic = X̃ucHci∑
j X̃ujHji

.

Auxiliary function for S:

Q(S, S̃) =
∑
u6=v

(
Auv (logAuv − 1) + (XSXT )uv

)
−
∑
u,v

(Auv
∑
p,q

λuvpq (log(XupSpqXvq)− log(λuvpq)) ,

278



www.manaraa.com

where λuvpq = X̃upSpqX̃vq∑
s,t X̃usSstX̃vt

.

Auxiliary function for H:

Q(H, H̃) =
∑
u,i

(
Pui(log(Pui)− 1) + (XH)ui

)
−
∑
u,i

Pui
∑
c=1

ψuic

(
log(XucHci)− log(ψuic)

)
,

where ψuic = XucH̃ci∑
j XujH̃ji

.

It is trivial that Q(Xu, Xu) = F (Xu), Q(S,S) = F (S) and Q(H,H) = F (H). The

rest will be to show that the three inequalities, Q(Xu, X̃u) ≥ F (Xu), Q(S, S̃) ≥ F (S) and

Q(H, H̃) ≥ F (H), are satisfied. Notice that each of the inequalities has a positive part in

both side, the only differences that are to be verified take the following form:

−
∑
i

ai × log(
xi
ai

) ≥ − log(
∑
i

ai ×
xi
ai

),

which is always true due to Jensen’s inequality [68] and the convexity of logarithmic func-

tion.

Proof of KKT stationary convergence point. We have just shown that the update rules

lead the objective function to converge by successfully constructing the auxiliary func-

tions. Here, we prove the second part of Theorem 29 of converging to stationary point by

verifying the satisfaction of the update rules with KKT conditions.

Introducing the Lagrangian multipliers αuc, βcj and γci,

J = D′(A‖XSXT ) +D(P‖XH) +
∑
u,c

αucXuc +
∑
c

βcScc +
∑
ci

γciHci
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Take the derivatives of J with regards to Xuc, Scc and Hci,

δJ

δXuc

=
∑
v 6=u

[
(SXT )cv + (XSvc)

]
−
∑
v 6=u

[Auv(SXT )cv

(XSXT )uv

+
Avu(XS)vc

(XSXT )vu

]
+
∑
i

[
Hvi −

PuiHci

(XH)ui

]
− αuc (5.25)

δJ

δScc
=
∑
u6=v

[
XucXvc −

AuvXucXvc

(XSXT )uv

]
− βc (5.26)

δJ

δHci

=
∑
v

[
Xvc −

PviXvc

(XH)vi

]
− γci (5.27)

Therefore, by multiplying δJ
δXuc

, δJ
δScc

and δJ
δHci

with Xuc, Scc and Hci, respectively, and let-

ting them equal to 0,(∑
v 6=u

[
(SXT )cv + (XS)vc

]
−
∑
v 6=u

[Auv(SXT )cv

(XSXT )uv

+
Avu(XS)vc

(XSXT )vu

]
+
∑
i

[
Hvi −

PuiHci

(XH)ui

]
− αuc

)
Xuc = 0, (5.28)(∑

u6=v

[
XucXvc −

AuvXucXvc

(XSXT )uv

]
− βc

)
Scc = 0, (5.29)(∑

v

[
Xvc −

PviXvc

(XH)vi

]
− γci

)
Hci = 0, (5.30)

we obtain the KKT condition, αucXuc = 0, βcScc = 0 and γciHci = 0, which ensures that

when the objective function converges, the convergence point is a stationary point. The

same results can also be inferred from Lemma 2 in [99].

This completes our proof of convergence property. We also note that since matrices

A, X, S and H are all non-negative during the updating process, the final X, S and H are

also non-negative.
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5.3.2.3 Complexity analysis

In the algorithm, if we use the naive update rules (Lines 5-7) directly, the time com-

plexity will be O(kn3). However, because of the pre-computation step (Lines 3 and 6), the

running time is reduced to O(kn2). The algorithm iteratively updates three matrices X, S

and H. The pre-computation step takes O(kn2), then, updating each row of X and three

pre-computed matrices requires O(kn). Thus, the complexity of updating the whole X is

O(kn2). Similarly, updating S and H takes O(kn2). In other words, an iteration requires

O(kn2).

5.3.3 Experiments

In this section, we evaluate the performance of the proposed method on three popular

social network datasets, i.e., Facebook, Twitter and Google+. We compare the performance

with the state-of-the-art methods for CS detection: CESNA [114] developed for overlap-

ping CS detection using both topology and node attributes, Infomap (overlapping version)

[34] and BigClam [113] which are two of the best methods for detecting overlapping com-

munities using network topology. To be fair, we provide the number of communities for all

methods since CESNA and BigClam require this number as an input.

5.3.3.1 Datasets.

For experimental purpose, we choose three collections of ego-network datasets stem-

ming from most popular social networking sites, i.e., Facebook, Twitter and Google+

(Taken from [114]). Those datasets contain network topology, node attributes and, more

importantly, ground-truth community structure. Ground-truth communities are defined by

social circles (or ‘lists’ in Twitter), which are manually labeled by the owner of the ego-

network. In Facebook and Google+, node attributes come from user profiles, such as gen-
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der, job titles, institutions, and so on. In Twitter, node attributes are defined by hashtags

used by the user in her tweets. The summary of the datasets is presented in Table 29.

Table 29.: Datasets summary.

Collections #Tests #Nodes #Edges #Attributes #Coms

Facebook 10 4,089 170,174 175 193

Google+ 132 250,469 30,230,905 690 437

Twitter 973 125,120 2,248,406 33,569 4056

From the above table, we can see that each Twitter’s ego network has 125 nodes in

average, which is the smallest number among three datasets, while Facebook’s ego network

contains around 409 nodes. Google+ is the collection with highest average number of

nodes in a dataset which is approximately 2,500. We will make use of these statistics later

to compare the scalability of the competing methods.

5.3.3.2 Measurement metrics.

We adopt the evaluation method from [114] which quantifies the performance based

on ground-truth communities (C∗) and detected communities (C). More specifically, F1

score and Jaccard similarity are chosen to be the measurements between two communities.

Then, for each detected, we will find a best matched ground-truth community based on

F1 score or Jaccard similarity. After matching all the detected communities, we sum over

all best scores and repeat the calculation for ground-truth communities. The final value

is the average of the two above summations. The reason for taking average is due to the

degeneration of performance if using only a summation, e.g., returning all possible subsets

of nodes would lead to perfect matching from ground-truth to detected communities.
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Formally, the evaluation function is,

1

|C∗|
∑

C∗i ∈C∗
max
Cj∈C

δ(C∗i , Cj) +
1

|C|
∑
Cj∈C

max
C∗i ∈C∗

δ(Cj , C
∗
i )

where function δ(.) measures the similarity between two communities. Thus, the value of

final score ranges from 0 to 1 where 1 indicates perfect recovery of ground-truth commu-

nities and conversely worst recovery for 0.

5.3.3.3 Experimental Results

Comparison of accuracy. We compare the accuracy of the methods, i.e., Infomap,

BigClam, CESNA and our proposed 3NCD in terms of average F1 score and Jaccard simi-

larity over all datasets in each collection. The experimental results are presented in Table 30

and 31 where we allow each method to run within 24 hours, if running out of that amount

of time, we ignore the results.

Table 30.: Accuracy of all the methods in terms of F1 score (Notions: T - Topology only,

T&A - Topology + Attributes).

Methods Info Facebook Google+ Twitter Average

Infomap T 0.1691 n/a 0.2117 0.1904

BigClam T 0.4199 0.2475 0.2253 0.2975

CESNA T&A 0.42106 0.2244 0.2462 0.29722

3NCD T&A 0.44075 0.2570 0.2406 0.3128

From these two tables above, we see two most important characteristics. First, the

methods that use both network links and node attributes, i.e., CESNA and 3NCD, perform

much better than Infomap and BigClam using only network topology. In particular with

F1 score, CESNA achieves 147% while 3NCD gives 158% relative improvements over
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Table 31.: Accuracy of the methods in terms of Jaccard similarity.

Methods Info Facebook Google+ Twitter Average

Infomap T 0.1063 n/a 0.1461 0.1264

BigClam T 0.3016 0.1509 0.1448 0.1991

CESNA T&A 0.3022 0.1428 0.1568 0.2006

3NCD T&A 0.3208 0.1712 0.1565 0.2162

Infomap on Facebook collection. On Twitter, these improvements are 14% and 9%, re-

spectively. Because Infomap ran out of time when running on Google+, we do not make

any comparison on this collection. On average, CESNA and 3NCD are 56% and 63% bet-

ter than Infomap. A similar pattern is witnessed in terms of Jaccard similarity with 58.7%

and 71% improvements for CESNA and 3NCD, respectively, over Infomap’s performance

on average.

The second equally crucial characteristic is that 3NCD algorithm significantly out-

performs CESNA method in most of the cases. In Table 30 with F1 score, 3NCD beats

CESNA by a margin of 5% and 15% on Facebook and Google+ collections, respectively.

Only on Twitter datasets, CESNA shows a little better performance of 5%. However, on

average, 3NCD gives 5% relative gain over the competitive method. On the other hand, in

terms of Jaccard similarity, the gaps between the 3NCD and CESNA are more striking. On

Facebook and Google+, the 3NCD again overtakes CESNA by 7% and 21% gains, respec-

tively. The results on Twitter for two methods can be seen equal or 0.2% better for CESNA

and on average the 3NCD is relatively superior by 8%.

At this point, we can use the statistics of the data to have a more general statement on

the performance of those methods. The average size of each datasets on Twitter collection

is fairly small, i.e., 125 nodes per dataset while for Facebook, it is roughly 409 nodes

and more than 2,500 in Google+ collection. As a result, CESNA shows a little better
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performance on small datasets. However, on the larger (Facebook) or much larger ones (in

case of Google+), 3NCD is significantly stronger and appears to be more appropriate.

Comparison of running time. We, next, compare the running time of the proposed,

3NCD, algorithm with other methods. The results are demonstrated in Fig. 41. Based

on the results, 3NCD is the fastest algorithm among the considered ones. For Google+,

which is the largest datasets, 3NCD is four times faster than CESNA, 279.34 (secs) for the

former and 1187.4 (secs) for the later. Infomap was unable to finish running on Google+

on time. Similarly, 3NCD runtime leads on Facebook dataset that is three times faster than

CESNA and 8 times faster than Infomap. Twitter contains only small datasets and certainly,

the running time of all the methods are not much different from each other. Bigclam and

3NCD seems to have comparable running time in all the experiments.
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Fig. 41.: Running time of the methods on three dataset collections. No runtime for Infomap

on Google+ dataset due to running out of 24 hours.

Comparison on partially observed networks. Since real-world data are always

noisy or the network may miss some edges due to errors, e.g., in collecting processes.

In this experiment, we will remove some portion of edges from the network and test how

the accuracy of the methods is affected. Fig. 42 shows the results when we remove from
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10% to 80% of the total edges in Facebook, Twitter and Google+ collections, respectively

from left to right.

Fig. 42.: Accuracy when removing some portion of edges on Facebook, Twitter and

Google+ datasets, respectively from left to right.

From the Fig. 42, we can see that in the cases of missing edges, 3NCD method admit

consistently better performance than CESNA on Facebook and Google+ datasets while

these two methods perform similarly on Twitter. We ignore Infomap on Google+ since it is

incapable of running on Google+. On Facebook and Twitter, both 3NCD and CESNA have

much higher results than Infomap. On the other hand, BigClam’s results are very close to

that of CESNA.

5.3.4 Conclusion

In this paper, we have proposed 3NCD - an accurate and fast NMF-based algorithm

for detecting overlapping communities in social networks. The proposed method combines

information from both network links and node attributes to a single non-negative matrix

factorization model. The proofs for convergence to a stationary solution of the update rules

are provided. By intensive experiments, we show that 3NCD algorithm is simultaneously

more accurate and faster than the current state-of-the-art community detection methods.
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CHAPTER 6

SECURITY AND PRIVACY

Security and privacy are two dominant concerns in cyber-world as the tremendous growth

of the Internet and in there, protecting information means live or dead for any individual,

organization, nation or even the whole world economy. There has been an enormous body

of works on detection, protection and prevention cyber-attacks, however, as the diversity

and fleet development of technologies, new and more sophisticated attacks are created ev-

ery day aiming towards businesses and organizations.

In the literature, many research works have focused on the practical aspects of those

attacks by monitoring and experimenting. In contrast, we desire to study how far the attacks

can go or their theoretical limits. In the following section, we present our first attempt in

studying the preliminary step, target reconnaissance, of all the attacks towards a target,

e.g., organization, institution.

6.1 Target Reconnaissance Strategy via Social Networks

Summary of contributions:

• We introduce a model of adaptive targeted crawling in OSNs with intelligent attack-

ers. The model takes into consideration the privacy setting in OSNs which grants

the users privileges to decide who can see their profiles and the availability of public

sources to the attackers.

• We formulate the crawling problem in OSNs as an adaptive targeted maximization

problem and prove that it is NP-hard. Based on the submodular function maximiza-

tion framework, we propose a provable (1− 1/e)-approximate greedy policy.
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• We carry thorough simulations in moderate-size networks in comparison with various

naive node-ranking policies to show the superior performance of the greedy policy.

6.1.1 Problem Formulation and NP-hardness

In this section, we formally define our model of the network crawling and the Adaptive

Targeted Crawling Maximization (ATCM) as a stochastic adaptive optimization problem.

We then prove the NP-hardness of the problem by relating it with the classical NP-hard

Maximum Coverage (MC).

6.1.1.1 Model and Problem Formulation

We model our network crawling problem as follows: the target is the set of users in

an online network where each user has his/her profile information and connections (friend-

ships) to other users. As a general privacy setting, a user can only see the profile infor-

mation and connection list of his friends and cannot see those who are two or more hops

away1. We model a crawler as an online user in the same networking environment. He does

not have the complete picture of the network topology (who are friends with whom) but he

knows the probability of any two nodes being friends. These friendship probabilities can

be estimated based on link prediction methods [40, 39].

The crawler wants to gather as much information from the targeted group as possible.

The only way he is allowed to take is friending the users in the group and if successful,

he can crawl the information of those successfully friended and also their friends. Each

user in the targeted network has different probability of accepting the friend request from

the crawler. To maximize the information crawled, the crawler may want to send friend

requests to all users, however, he will easily get detected by any network monitoring ser-

1We can easily extend this model to allow each user having his/her own privacy setting
of profile/connections without changing the characteristics of the problem.
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vice/manager. The best strategy for the crawler is to mimic the normal behavior by sending

friend request to one user, observing the response and then sending to another user. Thus,

the central concern is who the crawler should select in each step to maximize the informa-

tion gained subject to a time limit or limited number of steps.

We also incorporate two types of benefit for each user in the targeted group: 1) friend-

ing benefit Bf (v) obtained when the user accepts the friend request of the crawler and 2)

the information benefit Bi(v) which is the profile if the user is just a friend of the suc-

cessfully friended users. Apparently, Bf (v) ≥ Bi(v) since friending benefit also contains

information benefit. These benefits can be obtained from the importance of users in the

targeted organization.

From the model, we abstract our targeted set of users in the online network as a

stochastic directed graph G = (V,E,w) where V = {v1, ..., vn, s} is the set of n + 1

nodes (users): n targeted nodes {v1, ..., vn} and s representing the crawler who initially has

no connections to other users, E is the set of m directed edges with their corresponding

probabilities of being present w(e) ∈ (0, 1], e ∈ E. Denote Ps(v), v ∈ {v1, ..., vn} the

probability of user v accepting friend request from s.

Based on the abstraction, we define the set of states that a node can be in as O which

consists of: 1) accept (1) friend request if receiving one and reveal all the connections to

other people that he has; 2) reject (0) friend request and conceal his connections. Since each

edge in the graph has certain probability of being present, the first case actually composes

of a family of states where each is a possible subset of edges and happens with some

probability. In the original stochastic graph, the nodes are not in any of those states and

when we select a node to send friend request, the state of that node is revealed. Similarly

to the state of nodes, each edge can also be in one of three states {0, 1, ?} where 0 means

the edge is not present, 1 means it exists and ? means unrevealed since the origin node of

the edge rejects the friend request.
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We define a realization φ to be a function of the nodes to their states when all the

nodes are revealed and in some state, φ(v) = o where o ∈ O. Since if the state of a

node v is revealed, the connections from that node are also exposed, we use the notion

φ((v, u)) to refer to the state of edge (v, u). We require each realization to be consistent

meaning that each edge must be in only one of the states {0, 1, ?}. Thus, there are many

possible realizations which follow a probability distribution P [φ]. We denote Φ to be a

random realization and P [φ] = P [Φ = φ]. When only some fraction of nodes are realized,

we define a partial realization ψ to be a function of these realized nodes to their states,

ψ(v) = o, and domain of ψ to be dom(ψ) = {v|∃o ∈ O : ψ(v) = o}. A partial realization

ψ is consistent with a realization φ if they are equal everywhere in the domain of ψ. In this

case, we write φ ∼ ψ. If ψ and ψ′ are both consistent with some φ and dom(ψ) ⊆ dom(ψ′),

we say ψ is a subrealization of ψ′. Equivalently, ψ is a subrealization of ψ′ if and only if

ψ ⊆ ψ′.

Recall that our adaptive crawling problem asks for a strategy which selects a node to

send friend request given the observations (states) of all the previous requests. We formally

encode the selection strategy as a policy π, which is a function from a set of partial real-

ization to V . Thus, we can denote the domain of π as dom(π) which includes the set of

partial realizations of the policy. If the current partial realization is not in dom(π) then the

policy terminates. The domain of a policy is usually closed under subrealization. That is,

if ψ′ ∈ dom(π) and ψ is a subrealization of ψ′, then ψ ∈ dom(π). Given a policy π and

a realization φ, we denote E(π, φ) the set of nodes selected by π under realization φ and

compute the corresponding utility (total benefit) of π on φ as follows,

f(π, φ) =
∑

v∈E(π,φ,1)

Bf (v) +
∑

u∈E(π,φ,v,1)

Bi(u)

where E(π, φ, 1) = {v|E(π, φ), φ(v) = accept} and E(π, φ, v, 1) = {u|∃v : φ(v, u) =
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1, v ∈ E(π, φ, 1)}. Thus, the expected utility of a policy π is,

favg(π) = E[f(π,Φ),Φ] (6.1)

where the expectation is taken with respect to P (φ). We then define our adaptive crawling

maximization (ATCM) as follows.

Definition 19 (Adaptive Targeted Crawling Maximization). Given a networkG = (V,E,w),

where V is the set of user accounts, E is set of possible connections between users, each

edge (u, v) ∈ E exists with probability w((u, v)), for each node v, we have the probability

Ps(v) of v accepting our friend request and a budget k which is the number of nodes se-

lected by the policy. The goal of Adaptive Crawling Maximization (ATCM) problem is to

find a policy π that maximizes the expected utility favg(π) with |E(π, φ)| ≤ k for all φ.

The above definition states our formulation for the adaptive targeted crawling maxi-

mization as a stochastic adaptive optimization. The striking difference between this type

of problems and the others, termed one-step optimizations, is that the later find a solution

(set of nodes) at a single step based entirely on the stochastic data without considering any

observation. In contrast, stochastic adaptive optimizations find a policy which is a strategy

to select an item (node) at any step i given the observations of what happen after selecting

(i− 1) previous items. Thus, the solution is a long term policy.

6.1.1.2 NP-hardness

This subsection provides the proof of the problem being NP-hard. We will start from

the Maximum Coverage (MC) which is typical NP-hard problem and design a polynomial

time reduction from it to our ATCM problem. The decision version of MC is defined in the

following,

Definition 20 (Maximum Coverage (MC)). Given a collection of possibly overlapping sets
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S = S1, S2, ..., Sm and two integers, k and Q, whether there exists a subcollection S ′ ⊆ S

such that |S ′| ≤ k and |
⋃
Si∈S′ Si| ≥ Q.

Our hardness results is summarized in the following.

Theorem 30. Adaptive Crawling Maximization (ATCM) is at least as hard as MC that

implies the NP-hardness property of ATCM problem.

Proof. First, the decision version of the Adaptive Crawling Maximization is formulated as

follows: Given a graph G, a number k and a threshold D, whether there is a policy π such

that |E(π, φ)| ≤ k for all φ and favg(π) ≥ D.

Fig. 43.: Reduction from Maximum Coverage to ATCM

Given an instance of Maximum Coverage problem, we reduce it to an instance of

the above decision version of ATCM as follows: Denote V =
⋃
Si∈S Si, then for each

element vj ∈ V , we create a node tj in the ATCM instance. For each set Si ∈ S, we also

create a node ui. If vj ∈ Si, a directed edge from ui to tj is generated with probability

of existence being 1. In the ATCM instance, our source node s has the probability of

successfully friending every node being 1. The reduction is illustrated in Fig. 43. Thus,

the corresponding instance of ATCM problem is actually deterministic that we know all

the connections in the graph and every node will accept friend request if receiving one.

We set the friending and information benefits all to 1 and D = Q + k, where Q is from

MC instance and k is the same as in the original problem. Obviously the reduction has
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polynomial complexity.

Now, we prove that the MC instance is an YES if and only if ATCM instance is.

(→) Assume that S ′ ⊆ S such that |S ′| ≤ k and |
⋃
Si∈S Si| ≥ Q, then by setting

the policy π to select nodes in U = {ui|Si ∈ S ′} in any order, we achieve a policy that

E(π, φ) ≤ k (φ is the deterministic graph) and favg(π) ≥ k + Q. That indicates ATCM

instance is an YES.

(←) Conversely, if ATCM instance is an YES, that means there is a policy π such

that E(π, φ) ≤ k and favg(π) ≥ k + Q, we prove that the original MC is also an YES

instance. Observe that if a node tj is selected by π and π does not select any node ui for

which (ui, tj) is an edge in the graph, then we can instead change the selection of tj to

one of the nodes ui that is connected to ti (notice that there is at least one such ui since ui

corresponds to a set, tj corresponds to elements in MC and an element must be covered by

at least a set). Thus, if π selects a node tj , we can construct another policy π′ that selects

only nodes in {u1, ..., um} without decreasing the utility. For the MC instance, if we select

the subcollection S ′ = Si|ui ∈ E(π′, φ), then |S ′| ≤ k and |
⋃
Si∈S′ Si| = favg(φ)−k ≥ Q.

Thus, we complete the proof.

Therefore, the problem of finding the optimal policy π∗ is NP-hard meaning we cannot

find the solution in polynomial time unless the conjecture P=NP is proved. Our attention is

shifted to finding a near optimal policy of π∗. There is a special class of stochastic adaptive

optimization problems studied in [42] in which the utility function satisfies two properties:

Adaptive Monotonicity and Adaptive Submodularity. Instances in this class of problems

admit an (1− 1/e) adaptive greedy policy π meaning favg(π) ≥ (1− 1/e)favg(π
∗) where

e is the base of natural logarithm. In the next section, we will represent our greedy policy

that achieves the (1 − 1/e) near optimality and prove that by showing the satisfaction of

our utility function in Eq. 6.1 with adaptive monotonicity and submodularity.
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6.1.2 Adaptive Greedy Policy and Guarantee

In this section, we describe in details our adaptive greedy policy which selects the node

with maximum marginal gain at each step and prove that this policy is at least (1 − 1/e)

as good as the optimal policy. In other words, the greedy policy obtains an approximation

factor (1−1/e). The approximation guarantee is proved based on the monotone submodular

property of the expected utility function as shown in Subsection 6.1.2.2.

6.1.2.1 Adaptive Greedy Policy

Algorithm 26: Adaptive Greedy Policy for ATCM
Input: Graph G, budget k.

Output: A set of nodes A ∈ V with size k.

A← ∅;ψ ← ∅

for i=1 to k do

foreach u ∈ V \A do
∆(u|ψ) = E[f(A ∪ {u},Φ)− f(A,Φ),Φ ∼ ψ]

end

Select u∗ ∈ arg maxu ∆(u|ψ)

Set A← A ∪ {u∗}

Send friend request to u∗ and observe Φ(u∗)

Set ψ ← ψ ∪ Φ(u∗)

end

Return A

The adaptive greedy policy bases mainly on the concept of conditional expected marginal

gain which is defined as,

Definition 21 (Conditional Expected Marginal Gain). Given a partial realization ψ and a
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node v, the expected marginal gain of v conditioned on having observed ψ is

∆(v|ψ) = E[f(dom(ψ) ∪ {v},Φ)− f(dom(ψ),Φ)|Φ ∼ ψ]

Informally speaking, the conditional expected marginal gain of a node v is total benefit

of selecting that node with respect to all the previously selected nodes (observation ψ) and

the expectation is taken over all realizations that are consistent with known observation.

The detailed description of the policy is illustrated in Alg. 26. The whole idea of

adaptive greedy policy π is that, at each step i ≤ k, π selects the next node with the

maximum expected marginal gain conditioned on the last (i− 1) observations. The policy

iterates through k rounds: at round i, it computes the expected marginal gain of nodes that

have not been selected and selects the one that locally maximizes this measure. At the end

of round i, we send the friend request to the newly selected node and observe the outcome

which consists of the response to the request and if it is an acceptance, then, the states of

the edges from that node are also revealed. These observations are updated into the current

partial realization ψ.

6.1.2.2 Approximation Guarantee

In order to prove the (1−1/e)-approximation guarantee of the adaptive greedy policy,

we relate the ATCM problem to the maximization of adaptive submodular functions which

admits an (1−1/e) natural greedy policy compared to the optimal policy as studied in [42].

Thus, we will show that our objective utility function possesses the two properties: adaptive

monotonicity and adaptive submodularity. Recall from [42] that these two properties are

specified as follows.

Definition 22 (Adaptive Monotonicity). A set function f(.) is adaptive monotone with re-

spect to the distribution P (φ) of realization if the conditional expected marginal gain of
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any node is nonnegative, i.e., for all ψ with P [Φ ∼ ψ] > 0 and all v ∈ V , we have

∆(v|ψ) ≥ 0. (6.2)

Definition 23 (Adaptive Submodularity). A set function f(.) is adaptive submodular with

respect to the distribution P [φ] of realizations if the conditional expected marginal gain

of any fixed node does not increase as more nodes are selected and their states are ob-

served. Formally, f is adaptive submodular w.r.t. P [φ] if for all ψ and ψ′ such that ψ is a

subrealization of ψ′ and for all v ∈ V \dom(ψ′), we have

∆(v|ψ) ≥ ∆(v|ψ′). (6.3)

Our result is summarized in the following theorem.

Theorem 31. The adaptive greedy policy for our ATCM problem is (1−1/e)-approximate.

Proof. We will consecutively show the satisfaction of the expected utility function favg()

with the definition of adaptive monotonicity and submodularity in Def. 22 and Def. 23.

The monotonicity of the expected utility function f() is easy to verify since, under

any realization φ, the marginal gain of adding node v into dom(ψ) is either the benefit of

friending v and information from his newly revealed friends if v accepts the request or 0 if v

rejects. In both cases, the marginal gain is nonnegative. The conditional expected marginal

gain is just the weighted combination of marginal gains in each realization and, thus, also

nonnegative.

For the adaptive submodularity property, we need to prove that given two partial re-

alizations ψ and ψ′ in which ψ is a subrealization of ψ′ and a node v ∈ V \dom(ψ′), then
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∆(v, ψ) ≥ ∆(v, ψ′). Based on the fact that ψ is a subrealization of ψ′ and Def. 21, we have

∆(v|ψ) = E[f(dom(ψ) ∪ {v},Φ)− f(dom(ψ),Φ)|Φ ∼ ψ]

=
∑
φ∼ψ

∆(v|ψ, φ)P [φ|φ ∼ ψ] (6.4)

where ∆(v|ψ, φ) = f(dom(ψ) ∪ {v}, φ)− f(dom(ψ), φ). Thus,

∆(v|ψ) =
∑
φ∼ψ

∆(v|ψ, φ)P [φ|φ ∼ ψ]

=
∑
φ′∼ψ′

∑
φ∼κ

∆(v|ψ, φ)P [φ|φ ∼ κ]P [φ′|φ′ ∼ ψ′]

where κ = ψ ∪ φ′\ψ′. Now, given ψ as a subrealization of ψ′ and φ ∼ ψ, φ′ ∼ ψ′ are

two fixed realizations sharing ψ ∪ φ′\ψ′, we prove that ∆(v|ψ, φ) ≥ ∆(v|ψ′, φ′) where

v ∈ V \ψ′. That is because the utility of ψ given φ must be less or equal to that of ψ′ given

φ′, thus the added node v ∈ V \ψ′ (φ(v) = φ′(v) due to sharing ψ ∪ φ′\ψ′ which contains

v) cannot bring more benefit to ψ′ as it does to ψ. Applying ∆(v|ψ, φ) ≥ ∆(v|ψ′, φ′) to

Eq. 6.5, we obtain

∆(v|ψ) =
∑
φ′∼ψ′

∑
φ∼κ

∆(v|ψ, φ)P [φ|φ ∼ κ]P [φ′|φ′ ∼ ψ′]

≥
∑
φ′∼ψ′

∑
φ∼κ

∆(v|ψ′, φ′)P [φ|φ ∼ κ]P [φ′|φ′ ∼ ψ′]

=
∑
φ′∼ψ′

∆(v|ψ′, φ′)P [φ′|φ′ ∼ ψ′]
∑
φ∼κ

P [φ|φ ∼ κ]

= ∆(v|ψ′)
∑
φ∼κ

P [φ|φ ∼ κ] (6.5)

Since
∑

φ∼κ P [φ|φ ∼ κ] = 1, we finally achieve,

∆(v|ψ) ≥ ∆(v|ψ′) (6.6)

which completes the proof of adaptive submodularity.
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Thus, the utility function favg(.) is both adaptive monotone and submodular. Based on

the results of [42] that the greedy policy admits an (1−1/e)-approximation if the objective

function is adaptive monotone and submodular, we conclude that our greedy policy is (1−

1/e)-approximate.

Fast greedy computation. In the computation of adaptive greedy policy in Alg. 26, at

each step, it has to compute the expected marginal gain for all the nodes that have not been

selected. However, the marginal gain of most of the nodes do not change in consecutive

steps and thus it has a considerable waste of recomputation. Therefore, a better strategy is

to compute the utility of all the nodes and put them in a priority queue. Then, in each step,

we pop the node with maximum expected marginal gain and after having the observation,

we update the marginal gain of other nodes w.r.t. the observation. This implementation

also gives fast query for node with maximum expected marginal gain since it maintains

and updates the priority queue along with new observation.

6.1.3 Simulation

This section provides our simulation results in which we simulate the greedy policy

against a randomized policy. We show that the adaptive greedy policy achieves drastically

better results in terms of utility than the randomized and is scalable in terms of running

time and memory used.

Table 32.: Datasets’ statistical summary

Name Type #Node #Edges

Enron-email Communication Network 37k 184k

Epinions Social Network 76k 509k

Slashdot Social Network 77k 905k

Twitter Social Network 81k 1,768k
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6.1.3.1 Simulation Settings

Network Data: We select a set of four moderate-size networks2 with different char-

acteristics to run our simulation. The statistical description of those networks are given in

Table 32. Since the data contain only the nodes and edges without any extra information to

compute the probabilities needed, for simulation purposes, we randomize these numbers.

In particular, for each edge in the network, we choose a random number in (0, 1] as the

probability of existence and for each node, we also draw a random number in (0, 1] as the

probability of that node accepting the friend request.

Comparing Methods: To have a better view of the performance measured by the utility

(total benefit), we compare the adaptive greedy policy with three baseline policies: Random

which selects a random node in the network at each time step and send a friend request,

Degree which selects nodes with highest degrees, and Pagerank which ranks the nodes

based on pagerank and select nodes with largest values.

Running Environment: We write a C++ program to simulate each adaptive policies.

The simulation is run on a Linux machine with a 3.0GHz 8 core Xeon CPU and 16GB

RAM.

6.1.3.2 Simulation Results

Comparison of solution quality. In this simulation, we consider the whole network

as out target and run the adaptive policies on the four networks in Table 32. We run each

simulation 10000 times and record the average and standard deviation of the utility. The

results are illustrated in Fig. 44.

Comparing between the two policies in Fig. 44, it is clear that the adaptive greedy

policy considerably and consistently outperforms the other policies. For any value of k,

2Taken from: https://snap.stanford.edu/data/
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Fig. 44.: Comparison between policies on various networks.

the adaptive greedy policy achieves up to several orders of magnitudes better results than

the others. This verifies our good theoretical guarantee on the solution quality of the adap-

tive greedy policy in the network crawling problem. Pagerank and Degree have similar

behaviors since they both base on ranking nodes.

The second observation from Fig. 44 is that, for the group of adaptive greedy, pagerank

and degree policies, the first few selected nodes bring in the greatest utility increases as

opposed to less increase when k gets larger. This is understandable due to our greedy

strategy which always selects the nodes with largest conditional expected marginal gains

or selecting the nodes with highest degree/ranking first. Thus, the first few nodes carry

the largest amount of gain. In contrary, the adaptive randomized policy behaves linearly

with the value of k. That is the increases in utility linearly depending on the value of

k. This observation may be explained by the randomness of node selection without any
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consideration of the marginal gain in selecting nodes.

Targeted group in network. The previous simulations assume that we only know the

targeted part of the network. Here, we consider the set of targeted nodes among the whole

network and see how the adaptive greedy policy selecting nodes inside/outside the set of

interest. We first find all the communities in the weighted directed graph by Infomap[100]

which is one of the best known method for community detection. Then, we select two

communities with 21.7k and 9.3k nodes as the targets and run the adaptive greedy policy.
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Fig. 45.: Greedy policy on two communities (Lines indicate the utility percentage w.r.t. the

total and bars describe the percentage of selected nodes inside and outside targeted set).

The results are shown in Fig. 45. We see that the expected utility is consistent with

previous simulations. However, it is interesting that there is a small portion of the selected

nodes coming from outside of the interest groups. This portion gets larger when the number

of steps k increases. This may be attributed to the decreases in conditional marginal gain

when k gets bigger and at some point, selecting nodes outside the target gives higher utility

gain.
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6.1.4 Conclusion

We propose the adaptive network crawling problem which mimics the normal uses and

avoids being detected by selecting a node at time to send friend request and maximizing

the benefit. We formulate the problem as a stochastic adaptive maximization. We prove

that the cast optimization problem is adaptive monotone and submodular and thus admits

an (1− 1/e)-approximate policy. The good quality is verified by our thorough simulations

on various network data.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

7.1 Conclusion

In this dissertation, we propose near-optimal approximation algorithms for various

important graph problems on real-world billion-scale networks in three main areas:

• Information Diffusion: Influence Maximization and more practical variations, Cas-

cade size estimation, infection sources identification.

• Community Detection across multiple networks and on multi-attributed networks.

• Security on Social Networks: theoretical attacking models and near-optimal strategy.

7.2 Future works

More practical considerations of influence models and social streams are two very

potential directions that form my future work. My thesis have mainly focused on boosting

the algorithmic performance while assuming a complete diffusion model and network data.

However, learning a influence from observed data is remained as an important problem.

Furthermore, instead of taking an intermediate step in learning the model, optimizing the

influence directly on a stream of social events which reflect the influence cascade is also

very potential and worth studying in my future plan.
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Appendix A
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Patents

[1] Importance Sketching of Influence dynamics in massive-scale networks. Thang N.

Dinh and Hung T. Nguyen (Filed Feb 21, 2018, US1818941)

Journal Papers

[1] Hung T. Nguyen, My T. Thai and Thang N. Dinh. A Billion-scale Approximation

Algorithm for Maximizing Benefit in Viral Marketing, IEEE/ACM Transactions on

Networking (ToN), 2017

[2] Hung T. Nguyen, Preetam Ghosh, Michael L. Mayo and Thang N. Dinh. Social

Influence Spectrum at Scale: Near-optimal Solutions for Multiple Budgets at Once,

ACM Transactions on Information Systems (TOIS), 2017

[3] Hung T. Nguyen, Tri P. Nguyen, Tam Vu, and Thang N. Dinh. Outward Influence

and Cascade Size Estimation in Billion-scale Networks, Proceedings of the ACM on

Measurement and Analysis of Computing Systems (POMACS), 2017

[4] Hung T. Nguyen, Nam P. Nguyen, Tam Vu, Huan X. Hoang and Thang N. Dinh.

Breaking Bad: Finding Triangle-breaking Points in Large Networks, IEEE The Mul-

tidisciplinary Open Access Journal (IEEE Access), 2017
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Conference Papers

[5] Hung T. Nguyen, Tri P. Nguyen, Hai N. Pham, and Thang N. Dinh. Importance

Sketching of Influence Dynamics in Billion-scale Networks, in Proceedings of the

IEEE International Conference on Data Mining (ICDM), 2017, acceptance rate 9.25%

(Best Papers invited to KAIS)

[6] Hung T. Nguyen, Tri P. Nguyen, Tam Vu, and Thang N. Dinh. Outward Influence

and Cascade Size Estimation in Billion-scale Networks, in ACM International Con-

ference on Measurement and Modeling of Computer Systems (SIGMETRICS),
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[7] Hung T. Nguyen, My T. Thai and Thang N. Dinh. Stop-and-Stare: Optimal Sam-

pling Algorithms for Viral Marketing in Billion-scale Networks, in Proceedings of

the 2016 ACM International Conference on Management of Data (SIGMOD), 2016

(acceptance rate 19%)

[8] Hung T. Nguyen, My T. Thai and Thang N. Dinh. Cost-aware Targeted Viral Market-

ing in Billion-scale Networks, in Proceedings of the IEEE International Conference

on Computer Communications (INFOCOM), 2016 (acceptance rate 18.3%)

[9] Hung T. Nguyen, P. Ghosh, M. Mayo and Thang N. Dinh. Multiple Infection Sources

Identification with Provable Guarantees, in 25th ACM International Conference on

Information and Knowledge Management (CIKM), 2016 (acceptance rate 17.6%)

[10] Thang N. Dinh, Hung T. Nguyen, P. Ghosh and M. Mayo. Social Influence Spec-

trum with Guarantees: Computing More in Less Time, International Conference on

Computational Social Networks (CSoNet), 2015 (Best Paper Award)

[11] Hung T. Nguyen and Thang N. Dinh. Unveiling The Structure of Multi-attributed
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Networks via Joint Non-negative Matrix Factorization, In Proceedings of the IEEE

Military Communications Conference (MILCOM), 2015

[12] Hung T. Nguyen and Thang N. Dinh. Targeted Cyber-attacks: Unveiling Target Re-

connaissance Strategy via Social Networks, In Proceedings of the IEEE International

Conference on Computer Communications, Security and Privacy in BigData Work-

shop, (INFOCOM BigSecurity), 2016

[13] Hung T. Nguyen, Thang N. Dinh and Tam Vu. Community Detection in Multiplex So-

cial Networks, IEEE Workshop on Inter-Dependent Networks, (INFOCOM WIDN),

2015

[14] Hoang X. Huan, Tuyet T. A. Duong, Ha T. T. Doan, and Hung T. Nguyen. An

Efficient Ant Colony Algorithm for DNA Motif Finding, in International Conference

on Knowledge and Systems Engineering (KSE), Springer 2015.

Papers under Submission and Manuscripts

[15] Hung T. Nguyen, Kevin V. Bender and Thang N. Dinh. Unveiling the Structure of

Complex Social Networks: Fast and Accurate GPU-based Algorithms

[16] Hung T. Nguyen, My T. Thai, Thang N. Dinh, Approximate k-Cover in Hypergraphs:

Bounds, Efficient Algorithms, and Applications, in submission to conference

[17] Hung T. Nguyen, Alberto Cano, Tam Vu, and Thang N. Dinh. Blocking Self-avoiding

Walks Stops Cyber-epidemics: A Scalable GPU-based Approach, major revision to

IEEE Transactions on Knowledge and Data Engineering (TKDE).

[18] Hung T. Nguyen, My T. Thai and Thang N. Dinh. Provably Good and Efficient Al-

gorithms for Viral Marking in Billion-scale Networks, in submission to IEEE Trans-

actions on Knowledge and Data Engineering (TKDE)
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